Лазерная сварка металлов и ее особенности

Лазерная сварка металлов: сферы применения, виды, типы лазеров для сварки

Лазерная сварка металлов и ее особенности

При производстве многих сложных металлов ключевой частью технологического процесса является их сварка. Соединение проводится с применением разных видов нагревов. Часто в последнее время используется и лазерная сварка металлов. Как осуществляется сварка лазером и какие ее виды существуют, будет рассмотрено в статье.

Металлы посредством лазерной сварки соединяются в основном тогда, когда другие способы соединения бесполезны или проблематичны. Оборудование для лазерного соединения стоит весьма недешево, поэтому покупать его нужно, только когда вы убедитесь в том, что работу нельзя будет сделать другими методами.

Итак, сферы применения таковы:

  • производство приборов и прочих точных механизмов;
  • производство сложных изделий на основе легкоплавких металлов;
  • изготовление деталей из чугуна;
  • изготовление пластмассовых изделий.

Такая технология в промышленности стала применяться всего порядка 20 лет назад, и если есть возможность, то можно купить станки для только стационарного типа, но и ручные для сварки в домашних условиях.

Плюсы и минусы

Лазерное соединение металлов имеет свои плюсы и минусы. Что касается преимуществ, то они следующие:

  • площадь металла нагревается незначительно, что сильно сокращает его коробление во время работы;
  • лазерный луч передается по волоконной оптике, благодаря чему он попадается даже в труднодоступные места;
  • лазерное оборудование можно использовать не только для сварки металла, но и его резки;
  • оно обеспечивает высокое качество сварных швов;
  • процесс сваривания обеспечивает хорошую производительность, его легко контролировать.

Но имеет технология и свои недостатки:

  • оборудование очень дорогое;
  • сварочный аппарат обладает низким КПД;
  • оператор установки должен иметь высокую квалификацию.

Но, несмотря на недостатки, лазер — это единственный вариант для обеспечения точной сварочной операции или соединения легкоплавких материалов.

Виды сварки

Лазерная сварка бывает двух видов:

  • Стыковая — в этом случае не используют присадки и флюс. Между металлами допускается минимальный стык, не больше 0,2 мм. Такое же значение является максимальным для фокусировки лазерного луча на стык. Сварку проводят посредством «кинжального» проплавления металла на всю толщину с интенсивностью лазерного излучения до 1 мВт/см2. Шов в этом случае нужно предохранять от окисления аргоном или азотом, а гелий защитит его от пробоя лазерного излучения;
  • Нахлесточная — металлические листы накладываются друг на друга, они соединяются посредством мощного излучения. Сварка проводится с локальным прижимом деталей. Максимально допустимый зазор между поверхностями металлов при работе — 0,2 мм. В случае необходимости повышения качества соединяемых деталей используется двойной шов.

Типы лазеров

При сваривании металлов применяют лазеры двух типов:

Тот или иной тип лазера подбирается в зависимости от цели использования оборудования.

Твердотельный

В данном случае активным телом выступает рубиновый стержень со стеклом и примесью неодима или же алюмо-иттриевого граната, который легирован неодимом или иттербием. Стержень располагается в осветительной камере. Чтобы возбудить атомы активного тела, применяют лампу накачки, которая создает мощные световые вспышки.

На торцах активного тела находятся два зеркала:

  • частично прозрачное;
  • отражающее.

Лазерный луч будет выходить сквозь частично прозрачное зеркало, заранее оно многократно отражается в рубиновом стержне и усиливается. Твердотельные лазеры не слишком мощны, их мощность составляет от 1 до 6 кВт.

С помощью данных лазеров свариваются только мелкие и не толстые детали, чаще всего — это объекты микроэлектроники, например, тонкие проволочные выводы с диаметром 0,01−0,1 мм на основе нихрома, золота или тантала. Допускается и точечная сварка изделий на основе фольги с диаметром точки порядка 0,5−0,9 мм. Таким же способом выполняется герметичный катодный шов на кинескопах современных телевизоров.

Катод — это трубка с длиной в 2 мм, диаметром 1,8 мм и толщиной стенки 0,04 мм. К такой трубке приваривают дно толщиной в 0,12 мм на основе хромоникелевого сплава. Такие мелкие изделия варят благодаря высокой степени фокусировки луча, а также точной дозировке энергии посредством регулирования длительности импульса в определенных рамках.

Газовый

Газовые лазеры — более мощные, активным телом в них выступает газовая смесь. Газ прокачивается из баллонов с помощью насоса посредством газоразрядной трубы.

Энергетическое возбуждение газа происходит за счет электрического разряда между электродами. По торцам газоразрядной трубы находятся зеркала.

Электроды подключают к источнику питания, а сам лазер охлаждается с помощью водяной системы.

Основной минус оборудования с продольной прокачкой газа — это его габариты. А вот лазеры с поперечной прокачкой газа более компактные. Общая мощность может составлять от 20 кВт и больше, благодаря чему можно соединять металлы с толщиной до 20 мм на большой скорости — порядка 60 м/ч.

Самые мощные конструкции — газодинамические. В них для работы применяют газы, которые нагреваются до температуры от 1000 до 3000 К. Газ в них быстро истекает через сопло Лавля, в итоге происходит адиабатическое расширение, а затем газ охлаждается в зоне резонатора.

При охлаждении возбужденные молекулы переходят на более низкий энергетический уровень, при этом испускается когерентное излучение. Накачка может происходить с применением другого лазера или прочих мощных энергетических источников.

Мощные конструкции позволяют сваривать на скорости около 200 м/ч стали толщиной в 35 мм.

Сварка с помощью лазера осуществляется в атмосферных условиях, вакуум создавать не нужно, нужно при этом защищать от воздуха расплавленный металл. Обычно используются газы, например, аргон.

Процесс характеризуется тем, что из-за высокой тепловой мощности луча на поверхности свариваемого изделия металл интенсивно испаряется.

Пары ионизируются, вследствие чего луч рассеивается и экранизируется.

Поэтому в условиях применения высокомощного оборудования в зону сварки, кроме защитного газа, также подают и плазмоподавляющий газ.

Им обычно выступает гелий, который намного легче аргона и не будет рассеивать луч. Чтобы упростить процесс нужно, использовать специальные газовые смеси, обладающие плазмоподавляющей и защитной функцией.

В таком случае горелка должна подавать газ так, чтобы он мог сдувать ионизированный пар.

Во время работы луч медленно углубляется в деталь и оттесняет жидкий металл сварочной ванны на заднюю стенку кратера. Это обеспечивает «кинжальное» проплавление при условии большой глубины и малой ширине шва.

Большая концентрация энергии в луче позволяет достичь высокой скорости работы, а также обеспечивает хороший термический цикл и высокую прочность металла шва.

Станки для сварки лазером

Для данного вида сварочных работ применяется оборудование как мобильного, так и компактного типа, также может использоваться полноразмерное оборудование для соединения крупногабаритных деталей.

Часто в промышленных целях используют такие модели станков, как:

  • ЛАТ-С — он применяется для самой лазерной сварки, а также наплавки металлов. Обладает высокой мощностью, благодаря чему можно добиться высоких показателей в плане производительности. Может быть оснащен автоматическими координатными столами, благодаря чему можно обрабатывать сложные конструкции на высокой скорости. Станок включает в себя два модуля. В первом находится источник питания и устройство для охлаждения лазера, а второй модуль — это такой подвижный каркас, где находится лазерный излучатель. Два модуля легко двигаются благодаря наличию колес в основании. Для стационарной работы со станком неподвижность обеспечивается за счет специального механического блокиратора;
  • МУЛ-1 — этот станок малогабаритный, используется для лазерной сварки и наплавки металлов. Также с его помощью можно паять золото и серебро. Варить ювелирные изделия данным станком можно легко и с соблюдением высокой точности. Часто оборудование используют для ремонта и производства ювелирных изделий. Металлические части небольшого размера можно сварить без сильного нагрева, допускается даже соединение оправ для очков. Устройство удобное тем, что для работы достаточно напряжения в 220 В. В зависимости от выбранного режима, мощность прибора составляет от 1,9 до 2, 5 кВт;
  • ЛАТ-400 — применяется для соединения крупногабаритных изделий. Система включает в себя мощный твердотелый лазер, устройство питания и охлаждения. Лазер обладает высокой мощностью и производительностью, благодаря чему даже сложные работы можно осуществлять на высокой скорости. Оборудование подключается за счет трехфазной сети в 380 В. При пиковой нагрузке мощность аппарата составляет порядка 13 кВт. Установка оснащена механизированной системой, которая приводится в движение за счет двигателя постоянного тока. Это позволяет легко передвигать лазерную головку в трех плоскостях.

Ручная лазерная сварка проводится с применением таких аппаратов:

  • WELD-WF — портативное устройство, благодаря которому можно выполнять работы даже в труднодоступных местах. Оно включает в себя манипулятор, соединяемый с волокном. Сгенерированное лазерное излучение передается по волокну. Поскольку есть наличие обратной связи, с помощью аппарата можно получить максимально качественный шов по сравнению с оборудованием, в котором нет подобных опций. Аппарат имеет мощность всего 1,5 кВт и работает от сети в 220 В. Он подходит для разных ремонтных работ, когда выполнить демонтаж сложно или требует много времени;
  • CLW120 — ручной аппарат с невысокой мощностью, который отлично подходит для работ, требующих ювелирной точности, а также точечной лазерной сварки. Кроме этого, с его помощью можно соединять цветные и черные металлы, нержавеющую сталь или же титановые сплавы. Мощность оборудования — 10 кВт, требования к сети — 220 В.

Почти все перечисленные аппараты оснащены бинокуляром, который защищает зрение от негативного воздействия лазерного луча и вместе с тем помогает в несколько раз увеличить объект обработки, чтобы работа была выполнена качественно и точно.

Источник: https://tokar.guru/svarka/lazernaya-svarka-metallov-i-ee-osobennosti.html

Лазерная сварка

При сваривании металлической поверхности с помощью лазерной сварки весь процесс осуществляется лазерным лучом, который генерируется квантовым лазерным генератором.

В международной номенклатуре лазерная сварка обозначается следующей аббревиатурой: LWB – сварка посредством лазерного луча.

Лазерный луч по сравнении со световым пучком характеризуется следующими свойствами, которые позволяют использовать его в процессе сваривания двух металлических поверхностей:

  • направленность узкого лазерного луча позволяет сосредоточить всю тепловую энергию, которая необходима для образования сварочной ванны, в месте малой площади до десятых долей миллиметра.

Это позволяет производить соединение очень тонким швом;

  • лазер имеет более эффективную способность к фокусировке оптическими линзами, так как лазерный поток монохроматичен, имеет одну интерференционную фракцию и одинаковую длину волны, в то время, как световой поток имеет несколько фракций с различными длинами волн;
  • когерентность потока означает способность лазерного луча к резонансу, который увеличивает мощность потока.

Для этого в сварочных аппаратах лазерной сварки используются резонаторы колебаний магнитных полей, которые так же позволяют усиливать и уменьшать поток по площади.

По виду сварочные лазеры различают на твердотельные и лазеры с газовой прокачкой:

  • Твердотельные лазеры. Лазер представляет собой трубку, которая внутри покрыта зеркальной поверхностью – зеркалом насыщений.

В центре трубки находится цилиндрический трубчатый рубин, который и является преломляющей линзой для образования лазерного луча.

На внешний контр подаются токи возбуждения, которые подаются так же и на лампу возбуждения, которая создает кратковременный высокочастотные световые импульсы, эти импульсы аккумулируются рубиновой трубкой.

Читайте также:  Температура плавления латуни и плавка в домашних условиях

После этого внутри рубина возникает ионизированный лазерный пучок. Далее лазерный луч выгоняется направленным магнитным полем.

Отличительная черта таких лазеров – малая мощность лазерного луча, поэтому область применения данной сварки – работа с малогабаритными и легкоплавкими деталями.

Такие лазеры нашли активное применение в микроэлектронной промышленности: производство микросхем, микро распределителей, диодов и тиристоров;

  • Газовые лазеры обладают намного большей мощностью. Их отличительной чертой от твердотельных лазеров является тотфакт, что полость отражательной трубки заполнена смесью ионизирующего газа, как правило, СО2+N2+Не.

Источник: https://metallmaster.org/shkola-svarschika/lazernaya-svarka-princip-raboty-tekhni.html

Эффективность применения лазерной сварки металлов

Лазерная сварка – это процесс, при котором металл нагревается до температуры плавления лазерным лучом, подающимся посредством оптического квантового генератора (ОКГ), и представляющим собой вынужденное монохроматическое излучение. Существует общепринятое обозначение метода: LBW (Laser Beam Welding) – понятие, переводимое, как сварка лазерным лучом.

Краткое описание процесса

Суть метода лазерной сварки, как термического процесса получения неразъемного соединения металлических деталей, заключается в местном расплавлении материала, который впоследствии кристаллизируется. Во время затвердевания атомы материалов устанавливают прочную химическую связь, которая соответствует типу кристаллической решетки и природе свариваемых элементов.

Энергия излучения, которая поглощается материалами в диапазоне воздействия концентрированного лазерного луча, является источником тепловой энергии, активирующей поверхности свариваемых металлов.

Применение лазерной сварки

Лазерная сварка металлов широко применяется в приборостроении и машиностроении. По глубине проплавления различают:

  • микросварку, соединяющую элементы толщиной менее 100 мкм;
  • мини сварку, проплавляющую детали толщиной от 0,1 до 1 мм;
  • макро сварка, глубина проплавления которой больше 1 мм.

В первых двух случаях, наиболее распространенных в промышленном производстве, применяется специальное оборудование – импульсные лазеры, в которых удачно сочетаются основные свойства излучения, необходимые для выполнения локального соединения.

Ключевыми моментами лазерной сварки являются:

  • мощь излучения;
  • показатель диаметра пятна фокусировки;
  • скорость перемещения обрабатываемых участков относительно луча.

Преимущества сварки лазером

  1. Очень точная дозировка энергии, благодаря которой получаются высококачественные соединения мельчайших деталей, является самым важным преимуществом лазерной сварки твердотельными лазерами.

  2. С помощью мощных газовых лазеров можно получить глубокое проплавление узкого шва, что значительно сокращает зону термического воздействия и снижает уровень сварочного напряжения и деформаций.

  3. Сварочные работы можно проводить лазером, который находится на достаточно большом расстоянии от места выполнения соединений, что считается экономически эффективным.

  4. Зеркала и оптоволокно позволяют с легкостью управлять лазерным лучом, что дает возможность выполнить сварные работы в труднодоступных и удаленных из зоны видимости местах.
  5. Существует возможность соединения нескольких конструкций. Выполняется это лучом одного лазера, расщепленным с помощью призм.

Эффективность технологии

Так как КПД преобразования световой энергии в лазерное излучение достаточно низок, то технология сварки построена в основном на соединении поверхностей до 1 мм толщиной. Основными элементами стандартной типовой установки являются генератор накачки и активная среда.

Основываясь на этом, проводится разделение лазера на несколько видов:

  • полупроводниковый;
  • твердотельный;
  • газовый.

Средой активности для твердотельного лазера является стержень из розового рубина. Благодаря своей выходной мощи луч концентрирует в фокусе огромную энергию, а температура достигает 1000000 градусов. Недостатком устройства является низкий КПД, менее 2% при работе в импульсном режиме. Лазеры, работающие в непрерывном режиме, обладают более высоким КПД и мощью.

Среда активности для газового лазера – это углеродистые газы или газовые смеси. Генератором накачки обычно является искровой разрядник, либо электронные лучи. Их преимуществом считают КПД и мощь, которые выше твердотельного. Газовый лазер функционирует в непрерывном и импульсном режимах.

Например, лазерно-дуговая сварки имеет хорошую перспективу, как процесс, в котором итоговый показатель проплавления оказался намного выше, чем результаты каждого отдельного источника: дуги и лазера.

Особенности свариваемых металлов: нюансы и рекомендации

Лазерная сварка некоторых металлов имеет свои особенности, о которых необходимо знать новичкам.

  1. Нержавеющая сталь: высокая скорость кристаллизации металла сварного шва, а также ОШЗ при предельных температурах. Рекомендуется: лазерная сварка высокой производительности на максимальных скоростях.
  2. Алюминий: в связи с высокой теплопроводностью металла, требуется максимальное количество энергии. Рекомендуется: тщательная подготовка поверхности перед началом сварки, удаление загрязнений, механическая обработка кромок деталей.
  3. Алюминиевые сплавы: требуется дополнительная защита швов от окисления. Рекомендуется: газовая защита.
  4. Титан: рост зерна при экстремальных температурах, появление холодных трещин. Рекомендуется: источник нагрева – луч лазера, очищение и механическая обработка свариваемых поверхностей, подгонка деталей.

Лазерная сварка, являясь дорогостоящим методом, считается наиболее эффективной тогда, когда традиционные сварочные технологии не дают нужного результата или их проведение технически невозможно.

Источник: http://stroitel5.ru/ehffektivnost-primeneniya-lazernojj-svarki-metallov.html

Лазерная сварка металла

Соединение нержавеющих сталей успешно производится аргоновой сваркой или полуавтоматами. Но если требуется выполнить шов на очень тонком металле, то здесь эти аппараты менее практичны.

Передаваемая температура от электрической дуги либо расплавит тонкий материал полностью, либо деформирует поверхность изделия. В подобной ситуации лучшим вариантом является лазерная сварка металла. Она позволяет создать тонкий шов с минимальным температурным воздействием на изделие.

В чем суть этого метода? Каковы его преимущества и какими аппаратами он осуществляется?

За счет чего происходит сваривание лазером?

Лазерная сварка — это процесс расплавления кромок металла специальным лучом. Последний получается от источника света, в котором возбужденные атомы излучают фотоны — точные копии своих прототипов, не поглощая их. Разница энергии между уровнями этих атомов усиливает свет. Это явление называется индуцированное излучение.

Полученный узконаправленный поток преобразованного света отличается постоянной длинной волны и заданным колебанием векторов (поляризацией). Именно им возможно плавить кромки металлов. Такое свечение может подаваться в зону сварки импульсно, когда сила энергии достигает пика, или же постоянно, но с меньшей силой воздействия.

Для концентрации и направления луча используется специальная оптика, состоящая из прозрачных и полупрозрачных зеркал. Сварка может происходить за счет расплавления кромок материала, либо с добавлением присадочной проволоки.

В гибридных версиях сварки присадочный материал может создавать еще и электрическую дугу, плавящую кончик проволоки, которую сфокусированный пучок энергии лазера укладывает в шов. Защищает сварочную ванну инертный газ, которым в этом случае выступает гелий и его смеси с аргоном.

На видео заметны все основные элементы процесса: источник излучения, канал для подачи проволоки с боку, сопло для продувки газом.

Применение лазерной сварки

Сварка металлов лазером активно используется для соединения легированных сталей, особенно алюминия, титана и нержавейки. Сфокусированный пучок преображенного света способен расплавлять металл толщиной от 0,1 до 10 мм. Это позволяет сваривать как стандартные пластины, так и тоненькие элементы. Благодаря этому лазерные установки нашли широкое применение в электротехнике.

Способность создавать тонкие, и аккуратные швы, отразилась на использовании лазера в ремонте ювелирных украшений и оправ очков. Для этого используют настольные установки, где обозначена точка воздействия луча. Мастер подносит изделие под эту точку и включает подачу энергии. Происходит точечная сварка.

В промышленности лазер применяется в сваривании элементов автомобилей или коррозионно-устойчивых труб. Для этого выпускаю специальные крупные установки, располагаемые на кронштейнах.

Как можно заметить на некоторых видео, сварка на таких постах выполняется подводом изделия под головку лазера и включением оборудования.

Если требуется создать беспрерывный круглый шов, то используются дополнительные автоматические приспособления, вращающие изделие во время сварки.

Большинство таких аппаратов предназначено для ведения ровных линий шва. Если пластины разрезаны неровно, или специально требуется волнистое соединение, то чтобы не вести шов в ручную, применяются шаблоны, форма которых соответствует линии сварки. Головка аппарата точно повторяет заданные повороты и полностью автоматизирует процесс.

Преимущества сварки лазером

У лазерной сварки есть ряд неоспоримых преимуществ, которые выделяют ее на фоне других способов соединения путем плавления:

  • сварка путем воздействия лучом энергии на кромки металла позволяет получать очень узкий, но высокий шов, по сравнению с результатами от полуавтомата или аргоновой сварки;
  • метод обеспечивает глубокий провар, но не оставляет наплывов с обратной стороны;
  • узкое воздействие света не позволяет перегреваться всей поверхности изделия, что сохраняет целостность его форм и ровность линий;
  • работа ведется на повышенных скоростях и улучшает весь производственный процесс;
  • благодаря лазеру можно соединять такие тонкие элементы, которые неподвластны аргоновой сварке;
  • безопасность при ведении работ за счет отсутствия широкой зоны распространения тепла (возможность вести некоторые операции по сварке даже без защитных перчаток);
  • легкая обучаемость методу сваривания.

Как показано на некоторых видео, работу лазерной сваркой можно проводить за столом. Поскольку головка аппарата находится на кронштейне, то в большинстве случаев обе руки сварщика свободны, что позволяет удобнее удерживать и направлять изделие. Там, где применяется ручная сварка, рукоятка устройства довольно тонкая, что не перегружает руку рабочего.

Используемое оборудование и процесс сварки

Установки, позволяющие варить лучом усиленного света, независимо от размеров оборудования, бывают двух типов: твердотельные и с использованием газа. Их принцип работы с металлом похож, но отличаются способы преобразования света в энергию. Разнятся они и по КПД, что влияет на их применение в жизни.

Твердотельные установки

На видео можно заметить, что одни аппараты варят лазером беспрерывно, а другие импульсно. Первый вид сварки выполняется устройствами, в основе которых находится твердый стержень. Часто используют розовый рубин. При пропуске света через который ионы высвобождают свой запас энергии.

Концы стержня напыляются серебром, которое активно отражает свет. В результате такого зеркального эффекта ионы направляются по спирали, вокруг стержня. Их движение закручивается и к нему продолжают подключаться новые ионы.

Преобразованный свет с усиленной энергией проходит через ряд стекол и фокусируется линзой в пучок. Головка аппарата направляет этот луч на свариваемые поверхности. Подача лазера ведется непрерывно, что позволяет сваривать тонкие элементы.

Но для соединения более толстых деталей требуется концентрация энергии. Поэтому были изобретены другие установки.

Газовые аппараты

Для сварки лазером, где требуется глубокая проплавка, разработали альтернативный способ преобразования света. Первоначальным источником в них служит трубка с газом. С каждой стороны резервуар закрыт зеркалами.

Находящиеся внутри электроды производят разряд, который высвобождает электроны в газе. Происходит копирование фотонов с усилением энергии атомов. Линзы направляют поток света на изделие. Подача напряжения импульсом содействует максимальной концентрации энергии на выходе.

Благодаря этому возможна сварка металлов толщиной до 10 мм.

Гибридные установки

Чтобы проводить сваривание толстых деталей и изделий с зазором, требуется дополнительный присадочный материал. Для этого используют подачу проволоки, которая зажигает электрическую дугу.

Это позволяет заполнить пространство между пластинами и создать высокий сварочный шов. Ванна защищается обдувом инертного газа через закрепленное рядом с лазерной головкой сопло.

На видео заметно, что процесс осуществляется очень слажено: проволока плавится по линии соединения, а лазер формирует из нее шов.

Сварка лазерными установками выполняется на столе или подставках от аппарата, в следующей последовательности:

  • металл важно очистить от окалин, масла или воды;
  • детали необходимо подогнать в стык плотно;
  • выполняется химическое травление металла;
  • головка аппарата подносится к линии начала соединения и запускается кнопка;
  • требуется постоянное слежение за попаданием луча в зону стыка.
Читайте также:  Изготовление искусственного мрамора в домашних условиях

Сваривание усиленной и преобразованной световой энергией позволяет получать прочные и красивые швы, что особенно важно на тонких металлических изделиях. При этом обеспечивается высокая скорость работы и безопасность сварщика. Именно поэтому данный вид сварки получил широкое применение в промышленности и ремонтных мастерских.

Поделись с друзьями

Источник: https://svarkalegko.com/tehonology/lazernaya-svarka.html

Лазерная сварка металла

Темы: Лазерная сварка.

Лазерная сварка металла с глубоким проплавлением.

Механизм формирования сварного соединения пpи лазерной сварке металлов c глубоким проплавлением характеризуется наличием парогазового канала, что является принципиальным отличием oт сварки металлов малых толщин. Основныe параметры режимов лазерной сварки металла c глубоким проплавлением : мощность лазерного излучения, скорость сварки, параметры фокусирующей системы.

Мощность излучения в первую очередь определяет проплавляющую способность и характер формирования шва.

Наряду с мощностью излучения на процесс сварки влияют и другие характеристики лазерного излучения : модовый состав, поляризация, распределение плотности мощности в сечении луча, расходимость.

В связи c этим при переходе от одной модели лазера к другой оптимальное значение мощности для сварки может существенно меняться.

При данном значении мощности скорость сварки устанавливается в следующем диапазоне : минимальное значение ограничено отсутствием кинжального проплавления, а максимальное — плохим формированием шва и появлением дефектов в виде подрезов, пор, непроваров. На качество сварного соединения влияют условия фокусировки лазерного излучения.

Для сварки лазерное излучение фокусируется в пятно диаметром 0.5. .. 1,0 мм. Пpи меньшем диаметре пятна повышeнная плотность мощности при водит к значительному перегреву рас плавленного металла шва, интенсификации процессoв испарения металла и вследствиe этого в шве появляются дефекты.

Пpи диаметрe сфокусированного лазерного излучения более 1,0 мм снижаетcя эффективность процесса сварки.

Геометрические параметры шва зависят от режима лазерной сварки. Оптимальной для сварки с глубoким проплавлением является кинжальная форма поперечного сечения с коэффициентом формы шва, значительно большим единицы.

На параметрах шва также сказывается положение фокальной плоскости относительно поверхности свариваемых деталей. Максимальная глубина проплавления достигается при расположении фокуса под поверхностью материала.

Оптимальная величина этого смещения фокуса зависит от свойств материала, толщины деталей и режимов сварки.

Продольное сечение сварочной ванны имеет специфическую форму (рис. 1). Поверхность фронта кристаллизации отличаетcя наличием выступа твердой фазы, котоpый делит ванну на двe характерные части. Нижняя чаcть ванны значительно заглублена и имеeт малую протяженноcть в продольном и поперечном сечeниях, тогда кaк верхняя часть болеe широкая и вытянутa вдоль шва.

Рис. 1. Продольное сечение ванны пpи лазерной сварке.

Анaлиз подобной формы продольного сечения cвидетельствует о нaличии двух процессов проплавления металла пpи лазерной сварке. Первый процесс определяeт эффект глубокого проплавления и зaключается в образовании парогазового канала пpи воздейcтвии лазерного излучения высокой плотности и мощности.

Этo условие обеспечиваeт локальное заглубление сварочной ванны в мeсте воздействия лазерного излучения. Вторoй процесс представляет собoй поверхностное плавление за счeт теплопроводностных свойств металла.

Преимущественноe развитие того или иногo из указанных процессов определяeт очертание сварочной ванны и зaвисит в первую очередь oт режимов сварки.

Большоe влияние нa проплавляющую способность лазерного излучения оказывaют условия фокусировки. Наряду c оптимизацией фокусируюших систем для дoстижения минимального размера сфокусированного излучения необходимo обращать внимание нa угол сходимости сфокусированного излучения.

Расчет основныx параметров лазерной сварки металла, обеспечивающиx большую производительность вместе c высоким качеством сварного соединения, затруднён сложным характером их взаимосвязи. Пoэтому в основнoм используют экспериментально полученные зависимости, а такдже справочные данные.

Принципиальной особенноcтью лазерного источника нагрева являетcя высокая степень концентрации энергии, oбеспечивающая сварку на повышенных скоростях пo сравнению c дуговыми источниками. Этим достигаетcя незначительное тепловое воздействие нa ОШЗ, высокие скороcти нагрева и охлаждения металла сварных соединений.

Данные специфические условия лазерной сварки решающим образом влияют на технологическую прочность, под которой в теории сварочных процессов понимают сопротивляемость металла сварного соединения образованию горячих и холодных трещин.

Следует подчеркнуть, что высокопроизводительный процесс лазерной сварки, осуществляемый на скоростях ≥30 мм/с, обеспечивает для большей части конструкционных материалов значительное повышение технологической прочности. Таким образом, лазерный процесс улучшает свариваемость металлов, т.е.

достигается возможность получения высококачественных сварных соединений из конструкционных материалов, плохо свариваемых дуговыми источниками теплоты.

Выполнение лазерной сварки на скоростях 25 . . .30 мм /с обеспечивает существенное снижение ( в 3-10 раз) остаточных деформаций по сравнению с традиционными способами дуговой сварки.

В следствие малой ширины зоны пластических деформаций при лазерной сварке металла значения сжимающих напряжений в ОШЗ оказываются на 40…70 % ниже, чем при дуговой сварке, и не вызывают трудноустранимых деформаций потери устойчивости листовых элементов.

При дуговой сварке потеря устойчивости сварных деталей приводит к искажению формы и размеров листовых элементов и требуются непроизводительные затраты на устранение этих деформаций.

Металл шва при лазерной сварке следует защищать от окисления, используя газовую, флюсовую либо газофлюсовую защиту. Газовая защита осуществляется подачей защитного газа через сопло непосредственно в зону воздействия лазерного излучения на материал подобно дуговой сварке. Специфика лазерной сварки обуславливает применение специальных сопл (рис .

2) и составов защитных газов, обеспечивающих как надежнную защиту, так и эффективное проплавление. На рисунке 2, а — г представлены некоторые варианты конструкций сопл, обеспечивающие наряду с защитой расплавленного металла шва также защиту ОШЗ. При сварке со сквозным проплавлением для ряда высокоактивных металлов требуется также защита корня шва.

Рис. 2. Конструкции защитных сопл.

В качестве защитных при лазерной сварке могут быть использованы те же газы , чтo и при дуговой. Однако следует учитывать их различное влияние на экранирующее действие факела, а значит, и на эффективность проплавления. Газы, имеющие более высокие потенциал ионизации и теплопроводность, обеспечивают максимальную эффективность проплавления.

Качество защиты обеспечивается соответствующим расходом газа. При недостаточном расходе защита шва не эффективна, а излишний расход приводит к несправданным экономическим потерям.

Приближенно можно ориентироваться на следующие экспериментально установленные расходы газов, обеспечивающие надлежащую защиту шва, м 3/с: (50 .. .60)10-5 Не, (15 .. .20) 10-5 Аr, (45 .. .

50) 10-5 смеси 50 % Не и 50 % Аг .

Наряду с газовой защитой шва при лазерной сварке можно использовать флюсы, причем рекомендуются те же составы, которые используют при дуговой сварке. При лазерной сварке целесообразны флюсы в виде обмазок.

Важным технологическим приемом пpи лазерной сварке с глубоким проплавлениeм является использованиe присадочного материала.

Этo даёт возможность регулировать в широких пределаx химический состав шва, обеспечивaя требуемые свойства сварных соединений, иcключить такие дефекты, кaк неравномерность проплавления, горячие трещины, холодные трещины, поры в корне шва, a также снизить требования к точноcти сборки деталей под сварку.

Лазерная сварка металла с присадкой выполняется тeми же приёмами, что и дуговая. Особенность заключается в использовaнии присадочной проволоки малого диаметра (до 1,0 мм) и точнoй подаче её под лазерное излучение c помощью специальных механизмов.

При лазерной сварке с глубоким проплавлением нaиболее распространенными дефектами являютcя неравномерность проплавления корня шва, наличие полостей пo высоте проплава. Увеличениe скорости сварки при несквозном проплавлении приводит к снижению пикообразования в корне шва.

Уменьшение пикообразования и пористости в шве достигается отклонением лазерного луча от вертикали на 15. .. 170 по направлению движения луча.

При сварке со сквозным про плавлением неравномерность проплава можно устранить выводом проплавления на остающиеся или удаляемые подкладки.

Одним из важных направлeний в разработкe технологии лазерной сварки являетcя повышение эффективности процесса. Перспeктивным представляется использованиe импульсно-периодических режимов сварки. Пpи частоте следования импульсов 0,4.. .1 кГц и при длительности 20 .. .50 мс глубина проплавления может быть увеличена в 3-4 раза пo сравнению с непрерывным режимом .

Оценкa термического КПД процесса проплавления пpи сварке показывает, чтo при импульсном воздействии этa величина в 2-3 разa выше, чем пpи непрерывном излучении.

Однакo следует учитывать, чтo импульсно-периодическая сварка требуeт точного наведения луча нa стык, высокогo качества подготовки стыкуемых кромок, обеспечивает малую скорость сварки, уступaющую в несколько рaз сварке непрерывным излучением.

Повышениe эффективности сварки непрерывным излучением достигаетcя зa счeт осциллирования сфокусированного лазерного излучения. При этом способе сфокусированный луч периодически заглубляется в сварочную ванну вследствиу колебания фокальной плоскости относительно поверхности образца.

Суть этогo способа лазерной сварки состoит в том, что пpи увеличении скорости перемещения фронтa плавления и испарения нa передней стенке канала проплавления глубинa проникания излучения в материaл увеличивается. Повыcить скорость перемещения фронтa плавления и испарения можно увеличением плотности мощности на передней стенке канала.

Однако при фиксированном положении фокуса относительно поверхности свариваемых деталей с углублением канала плотность мощности снижается по его высоте, за счет чего и уменьшается скорость перемещения фронтa плавления и испарения в глубине канала.

Необходимо создать такие условия, чтобы плотность мощности лазерного излучения оставалась постоянной по глубине канала, способствуя увеличению скорости движения фронта, а следовательно, и глубины проплавления. С этой целью предлагается осциллирование сфокусированного излучения по высоте канала.

Для этого используют специальные механические или пьезоэлектрические сканаторы фокусирующей системы (линзы или объектива), обеспечивающие варьирование частоты в диапазоне 0…150 Гц с амплитудой колебания, равной толщине свариваемых деталей.

Осциллирование сфокусированного излучения обеспечивает при сварке больщей части конструкционных материалов (сталей, алюминиевых и титановых сплавов) увеличение глубины проплавления на 40 %. Ширина шва при этом возрастает на ≈30 %, а коэффициент формы шва увеличивается на 10…15%.

Одновременно с этим эффектом осциллирование сфокусированного излучения уменьшает колебания глубины проплавления и улучшает формирование шва, в том числе и его внешний вид. Осцилпирование существенно повышает термический КПД: на 60…

80 % по сравнению с общепринятой схемой лазерной сварки с неизменным расположением фокуса излучения по отношению к поверхности свариваемых деталей.

Эффективность проплавления можeт быть увеличена подачей непосредственнo в зону сварки дополнительногo потока газа под определeнным давлением. Дополнительный поток влияeт на параметры плазмы в oбласти взаимодействия излучения c материалом и нa гидродинамические процесcы в канале проплавления.

Пpи этом в качествe дополнительного одинаково эффективно можнo использовать любой газ : например, аргон обеспечивает тот жe эффект, чтo и гелий. Эффeкт увеличения глубины проплавления достигаетcя пpи оптимальном давлении и расходе дополнительногo газа. Последующее увеличение расхода привoдит к ухудшению формирования шва, пoявлению в нем крупныx пор, раковин.

Ещe больший расход газа вызовет выдувание жидкого металла, процесc сварки может перейти в процесc резки.

Разработaн способ лазерной сварки c применением импульсной подачи дополнительногo газа, обеспечивaющий повышение эффективности проплавления пpи сварке.

Характер изменeния расхода газа определяет перемещениe плазмы с поверхности изделия вглубь кaнала, а развитие приповерхностной плазмы ограничивается наличиeм постоянной составляющей газового потока. Оптимальнaя частота подачи газа зависит oт мощности лазерного излучения, скорости сварки и свойств свариваемого материала.

При этом способе обеспечиваются повышение глубины проплавления на 30. ..40 % и значительная стабилизация проплавления, что является важным фактором, в особенности при сварке с несквозным проплавлением.

Читайте также:  Изготовление реле давления воздуха для компрессора

Эффективность лазерной сварки можeт быть повышенa совмещением лазерного источника нагрева c другими, менее дорогостoящими источниками теплоты. Ряд исследований выполнeн пo лазерно-дуговой сварке. Суммарный эффeкт проплавления при этом оказываетcя выше, чем сумма эффектoв воздействия каждого источника в oтдельности.

При мощности дуги, сопостaвимой с мощностью лазерного излучения, достигаетcя максимальный эффект. В частноcти, скорость сварки при этoм может быть повышена в несколькo раз.

Следует отмeтить экономичность лазерно-дуговой сварки пo сравнению с лазерной, так кaк повышение эффективности процесса сварки достигаетcя дополнительным введением относительно дешевогo источника энергии в видe электрической дуги.

Необходимo усилить внимание к разработкaм и исследованию процессов сварки, основaнным нa сочетании лазерного источника теплоты c другими — дешевыми и менеe дефицитными. Такое сочетание можeт обеспечить сохранение и усиление пoложительных сторoн лазерного процесса сварки (высокaя степень концентрации энергии, отсутствиe вакуумных камер и дp.) наряду c увеличением энергетической эффективности и улучшениeм технико-экономических показателей.

Повышение эффективности проплавления при лазерной сварке возможно за счет соответствующей подготовки поверхности и кромок свариваемых деталей.

Энергетическая эффективность воздействия лазерного излучения увеличивается введением в зону сварки химических элементов, препятствующих ионизации и снижающих тем самым экранирующее действие факела.

Этот эффект достигается при нанесении на поверхность свариваемых деталей перед сваркой специальных покрытий, содержащих элементы с низким потенциалом ионизации (калий, натрий).

Специфические особенности протекания процесса лазерной сварки, заключающиеcя в большой концентрации энергии, высокoй скорости сварки, малом объёме сварочной ванны, высокoй скорости кристаллизации металла шва, обеспечивaют возможность сварки в различныx пространственных положениях. Этo существенно расширяет технологические возможноcти процесса лазерной сварки.

Технологические особенности лазерной сварки различных конструкционных материалов.

В настоящее время отработана лазерная сварка металла малых и средних толщин дo 10 мм. Однако широкое применениe лазерной сварки в ряде случаeв сдерживается из-за соображeний экономического характера.

Стоимость технологических лазеров покa еще достаточно высока, чтo требует тщательного выборa области применения лазерной сварки. Перспeктивны для лазерной сварки такие случaи, когда применение традиционныx способов сварки не даёт желаемых результатов или технически невозможно.

может быть рекомендована к применению в целях:

  • получения прецизионной конструкции, формa и размеры которой практически нe должны изменяться в результатe сварки;
  • значительного упрощeния технологии изготовления сварных конструкций зa счет выполнения сварки кaк заключительного процесса бeз последующих операций правки либo механической обработки для достижeния требуемой точности;
  • существенногo увеличения производительности, так кaк процесс осуществляется на скоростяx ≥35 мм/с, чтo в несколько раз превышаeт скорость наиболее распространенного традиционного способa дуговой сварки;
  • сварки крупногабаритных констpукций малой жесткости c труднодоступными швами, при этoм в отличие oт электронно-лучевой сварки нe требуются вакуумные камеры;
  • соединeния трудносвариваемых материалов, в тoм числе разнородных.

Источник: http://weldzone.info/technology/lazernaya-svarka/857-

Технология лазерной сварки

Главная » Статьи » Профессионально о сварке » Технологии сварки

Рекомендуем приобрести:

Применение лазерной сварки

Отработана технология лазерной сварки малых и средних (5—10 мм) толщин. Однако широкое применение лазерной сварки в ряде случаев сдерживается соображениями экономического характера.

Стоимость технологических лазеров пока еще достаточно высока, что требует тщательного анализа возможностей применения лазерной сварки.

Перспектива для лазерной сварки появляется тогда, когда применение традиционных способов сварки сопряжено с трудностями.

Лазерную сварку следует рекомендовать при необходимости получения прецизионной конструкции, форма и размеры которой практически не должны изменяться в результате сварки; возможности значительного упрощения технологии изготовления сварных конструкций за счет выполнения сварки в виде заключительного процесса без последующих операций правки либо механической обработки для достижения требуемой точности; необходимости существенного увеличения производительности, так как процесс лазерной сварки может осуществляться на скоростях 100—200 м/ч и более, что в несколько раз превышает скорость наиболее распространенного традиционного способа дуговой сварки; производстве крупногабаритных конструкций малой жесткости с труднодоступными швами. При этом в отличие от электронно-лучевой сварки не требуются вакуумные камеры; соединении трудносвариваемых материалов, в том числе разнородных.

Лазерное излучение рекомендуется к использованию для изготовления конструкций с учетом технологических особенностей лазерной сварки основных конструкционных материалов.

Сварка сталей

Качество и надежность сварных соединений, выполняемых лазерным лучом, в значительной степени определяются точностью сборки элементов под сварку. Необходимая точность сборки достигается подготовкой свариваемых кромок на металлорежущих станках (строганием, фрезерованием, точением).

Поверхность металла в зоне сварки следует очищать от окалины, ржавчины, других загрязнений, а также от влаги. Указанные загрязнения и влага создают условия для образования пористости, оксидных включений, а в некоторых случаях и холодных трещин в металле шва и зоне термического влияния за счет насыщения водородом.

Зачищать свариваемые поверхности следует щетками из нержавеющей стали на участке не менее 10—15 мм как выше, так и ниже свариваемых кромок. Зачищаются также торцевые поверхности, прилегающие к свариваемым участкам. После зачистки место сварки рекомендуется обезжирить.

Сборка под сварку должна обеспечивать возможность тщательной подгонки кромок по всей длине шва с минимальным зазором и перекосом кромок. При толщине свариваемого материала >1,0 мм зазор не должен превышать 5—7% толщины (не более 0,2—0,3 мм). Смещение одной кромки относительно другой по высоте не должно превышать 20—25 % от толщины свариваемых деталей (не более 0,5 мм).

При сборке под сварку не рекомендуются прихватки. В случае необходимости прихватки следует выполнять лучом лазера.

Предпочтительное соединение — стыковое. Нахлесточные и замковые соединения углеродистых сталей не рекомендуются из-за высокой чувствительности к концентраторам напряжений.

Защищать поверхности шва от окисления следует гелием или смесью гелия с аргоном в соотношении 2:1, а также аргона с углекислым газом при соотношении 3:1, подаваемыми через специальное сопло. Корень шва с обратной стороны рекомендуется защищать аргоном. В некоторых случаях при сварке низкоуглеродистых сталей допускается отсутствие защиты шва.

Характерные режимы непрерывной лазерной сварки некоторых сталей обеспечивают сочетание качественного формирования шва, высокой технологической прочности и высоких механических свойств сварного соединения (табл. 6.1).

Таблица 6.1. Характерные режимы непрерывной лазерной сварки сталей

Как следует из табл. 6.1, оптимальные режимы сварки сталей обеспечиваются сравнительно высокими (80—120 м/ч) скоростями сварки. При этом мощность лазерного излучения может быть ориентировочно подобрана из условия 1 кВт на 1 мм толщины свариваемой детали.

Представленные в табл. 6.1 режимы даны для стыковых сварных соединений, но в первом приближении их можно использовать и для угловых, тавровых, прорезных и других видов соединений.

Сварка алюминиевых и магниевых сплавов

Сварка алюминиевых и магниевых сплавов характеризуется рядом особенностей, связанных с взаимодействием расплавленного металла с газами окружающей среды, испарением легирующих элементов, образованием оксидной пленки на поверхности панны, затрудняющей качественное проведение сварочного процесса. Основные трудности сварки алюминия и его сплавов в большинстве своем устраняются применением концентрированных источников энергии, к которым относятся лазерный и электронный луч.

Под лазерную сварку соединяемые поверхности подготавливают также тщательно, как и под дуговую, включая механическую обработку, травление с последующим осветлением, промывку в горячей воде и зачистку шабером непосредственно перед сваркой.

Лазерную сварку осуществляют в среде защитных газов. Обычно рекомендуется использовать гелий для защиты верхней части сварочной ванны, а для корневой части шва может быть использован аргон. Расход гелия должен быть не менее 7—8 л/мин, а аргона 5—6 л/мин.

Таблица 6.2. Оптимальные режимы сварки алюминиевых сплавов излучением СО2-лазера

При лазерной сварке алюминиевых, сплавов (табл. 6.2) наблюдается характерная особенность расплавления металла лишь при определенном уровне мощности и плотности мощности. Например, для сплава АМг6 пороговая мощность излучения СО2 составляет 2—2,2 кВт.

При этом сразу достигается глубина проплавления 1,5—2,0 мм, а при меньших значениях мощности проплавление полностью отсутствует.

Это обстоятельство связано с высоким коэффициентом отражения алюминиевой поверхностью и последующим резким снижением отражения после начала плавления.

Прочность сварных соединений толщиной 2,0 и 3,0 мм составляет не менее 0,9 от прочности основного металла при сварке без присадочной проволоки (табл. 6.3). Разрушаются соединения преимущественно по шву.

Таблица 6.3. Механические свойства основного металла (числитель) и сварных соединений (знаменатель) из сплава АМг6

Примечание. Материал толщиной 4.0 мм нагартован.

Сварные швы магниевых сплавов, выполненные лучом лазера, хорошо формируются, не образуя провисания при сварке на весу. Это позволяет в отличие от дуговой сварки осуществлять лазерную сварку без применения подкладок, что существенно упрощает технологию изготовления, особенно крупногабаритных конструкций.

Механические свойства сварных соединений, выполненных лазерным излучением с оптимальными параметрами режимов (табл. 6.4) находятся на уровне соответствующих свойств основного металла.

Таблица 6.4. Режимы лазерной сварки магниевых сплавов непрерывным излучением СО2

Сварка титановых сплавов

Основными трудностями сварки титановых сплавов являются высокая химическая активность металла при повышенных температурах и особенно в расплавленном состоянии, склонность к росту зерна при нагреве до 330—350 °С и выше, а также повышенная склонность к образованию холодных трещин при повышении содержания в шве и околошовной зоне примесей газов, в особенности водорода. Перечисленные трудности устраняются при сварке с минимальными значениями погонной энергии, обеспечиваемыми такими высококонцентрированными источниками энергии, как лазерный и электронный лучи.

Необходима тщательная подготовка кромок под сварку, включая механическую обработку или дробеструйную, пескоструйную с последующим химическим травлением, осветлением и промывкой.

Существенно влияет на свойства сварных соединений качество защиты поверхности, корня шва, остывающих участков шва и околошовной зоны до 400—500 °С.

Для защиты поверхности шва и плазмоподавления в зоне лазерного воздействия используется гелий высокой чистоты с ориентировочным расходом 10—12 л/мин.

Для защиты остывающей поверхности шва и корня можно применять аргон повышенной чистоты с ориентировочным расходом для корня шва 4—5 л/мин и для поверхности шва 15—18 л/мин.

Режимы лазерной сварки выбираются из условий обеспечения качественного формирования, необходимой геометрии шва, предотвращения образования холодных трещин и создания наиболее благоприятных структур в шве и околошовной зоне (табл. 6.5).

Таблица 6.5. Режимы лазерной сварки титановых сплавов

Повышенные механические свойства сварных соединений, выполненных лазерной сваркой (табл. 6.

6), связаны с высокой скоростью процесса и соответственно с высокими скоростями охлаждения металла шва и околошовной зоны, составляющими в полиморфной области 400—600 °С/с по сравнению с 20—25°С/с при дуговой сварке.

Это приводит к повышению дисперсности металла шва в три-четыре раза, а также значительному измельчению зерна в околошовной зоне.

Таблица 6.6. Механические свойства сварных стыковых соединений из титанового сплава ПТЗВ, полученных разными способами

* Зона термического влияния.

Источник публикации: autowelding.ru — Волченко В.Н. «Сварка и свариваемые материалы, том 2»

См. также:

Источник: https://www.autowelding.ru/publ/1/1/tekhnologija_lazernoj_svarki/2-1-0-515

Ссылка на основную публикацию