Особенности катодной защиты трубопроводов от коррозии

Защита трубопроводов от коррозии: катодная, электрохимическая, протекторная

Особенности катодной защиты трубопроводов от коррозии

Защита трубопроводов от коррозии может выполняться посредством множества технологий, наиболее эффективным из которых является электрохимический метод, к которому и относится катодная защита.  Зачастую антикоррозийная катодная защита применяется комплексно, вместе с обработкой стальной конструкции изолирующими составами.

Магистральный наземный газопровод

В данной статье рассмотрена электрохимическая защита трубопроводов и особенно детально изучен ее катодный подвид. Вы узнаете, в чем заключается суть данного метода, когда его можно использовать и какое оборудование применяется для катодной защиты металлов.

Разновидности катодной защиты

Катодная защита стальных конструкций от коррозии была изобретена в 1820-х годах.

Впервые метод был применен в кораблестроении — защитными анодными протекторами был обшит медный корпус судна, что значительно уменьшило скорость корродирования меди.

Методика была взята на вооружение и начала активно развиваться, что сделало ее одним из наиболее эффективных методов противокоррозионной защиты на сегодняшний день.

Катодная защита металлов, согласно технологии выполнения, классифицируется на две разновидности:

  • метод №1 — к защищающейся конструкции подсоединяется внешний источник тока, при наличии которого само металлическое изделие выполняется роль катода, тогда как в качестве анодов выступают сторонние инертные электроды.
  • метод №2 — «гальваническая технология«: защищаемая конструкция контактирует с протекторной пластиной изготовленной из металла, имеющего больший электроотрицательный потенциал (к таким металлам относится цинк, алюминий, магний и их сплавы). Функцию анода в данном метода выполняют оба металла, тогда как электрохимическое растворение металла протекторной пластины обеспечивает протекание через защищаемую конструкцию необходимого минимума катодного тока. По истечению времени протекторная пластина полностью разрушается.

Метод №1 — наиболее распространенный. Это простая в реализации противокоррозионная технология, которая эффективно справляется  с многими разновидностями коррозии металлов:

  • межкристальная коррозия нержавеющей стали;
  • питтинговая коррозия;
  • растрескивание латуни из повышенного напряжения;
  • коррозия под воздействием блуждающих токов.

Подключение электродов катодной защиты к трубопроводу

В отличие от первого метода, пригодного для защиты больших по размеру конструкций (применяется для подземных и наземных трубопроводов), гальваническая электрохимзащита предназначена для применения с изделиями малых размеров.

Гальванический метод  широко распространен в США, в России он практически не используется, поскольку технология возведения трубопроводов в нашей стране не предусматривает обработку магистралей специальным изоляционным покрытием, которое является обязательным условием для гальванической электрохимзащиты.

Отметим, что без изоляционного покрытия значительно увеличивается коррозия стали под воздействием грунтовых вод, что особенно характерно для весеннего периода и осени. Зимой, после замерзания воды, коррозия от влаги существенно замедляется.

Суть технологии

Катодная противокоррозионная защита осуществляется посредством применения постоянного тока, который подается на защищаемую конструкцию от внешнего источника (чаще всего используются выпрямители, преобразующие переменный ток в постоянный) и делает ее потенциал отрицательным.

Сам объект, подключенный к постоянному току, является «минусом» — катодом, тогда как подведенное к нему анодное заземление, является «плюсом».

Ключевым условием эффективности катодной защиты является наличие хорошо проводимой электролитической среды, в качестве которого при защите подземных трубопроводов выступает грунт, тогда как электронный контакт достигается за счет использования металлических материалов с высокой проводимостью.

В процессе реализации технологии между электролитической средой (грунтом) и объектом постоянно поддерживается  требуемая разница потенциала тока, величина которой определяется с помощью высокоомного вольтметра.

Особенности катодной защиты трубопроводов

Коррозия — основная причина разгерметизации всех типов трубопроводов. Из-за повреждения металла ржавчиной на нем образуются разрывы, каверны и трещины, приводящие к разрушению стальной конструкции. Данная проблема особенно критична для подземных трубопроводов, которые постоянно пребывают в постоянном контакте с грунтовыми водами.

Катодная защита газопроводов от коррозии выполняется одним из вышеуказанных способов (посредством внешнего выпрямителя либо гальваническим методом). Технология в, данном случае, позволяет уменьшить скорость окисления и растворения металла, из которого изготовлен трубопровод, что достигается за счет смещения его естественного коррозийного потенциала в отрицательную сторону.

Посредством практический испытаний было выяснено, что потенциал катодной поляризации металлов, при котором замедляются все коррозийные процессы, равен -0.85 В, тогда как у подземных трубопроводов в естественном режиме он составляет -0.55 В.

Чтобы противокоррозионная защита было эффективной, необходимо посредством постоянного тока снизить катодный потенциал металла, из которого изготовлен трубопровод, на -0.3 В. В таком случае скорость корродирования стали не превышает 10 микрометров в течении года.

Схема катодной защиты трубопровода

Катодная защита — наиболее эффективный метод защиты подземных трубопроводов от блуждающих токов. Под понятием блуждающих токов подразумевается электрический заряд, который попадает в землю в результате работы точек заземления ЛЭП, громоотводов либо движения поездов по железнодорожным магистралям. Точное время и место появления блуждающих токов выяснить невозможно.

Коррозийное воздействие блуждающих токов на металл происходит в случае, если металлическая конструкция имеет позитивный потенциал относительно электролита( для подземных трубопроводов электролитом выступает грунт). Катодная защита же делает потенциал металла подземных трубопроводов отрицательным, что устраняет риск их окисления под воздействием блуждающих токов.

Технология применения внешнего источника тока для катодной защиты подземных трубопроводов предпочтительна. Ее преимущества — неограниченный энергоресурс, способный преодолевать удельное сопротивление грунта.

В качестве источника тока противокоррозионная защита используется воздушные линии электропередач мощностью 6 и 10 кВт, если же на территории ЛЭП отсутствуют, могут применяться мобильные генераторы, работающие на газу и дизтопливе.

Детальный обзор технологии катодной защиты от коррозии (видео)

Оборудование для катодной защиты

Для противокоррозионной защиты подземных трубопроводов применяется специальное оборудование — станции катодной защиты (СКЗ), состоящие из следующих узлов:

  • заземление (анод);
  • источник постоянного тока;
  • пункт управления, контроля и измерений;
  • соединительные кабели и провода.

Одна СКЗ, подключенная к электросети либо к автономному генератору, может выполнять катодную защиту сразу нескольких рядом расположенных магистралей подземных трубопроводов. Регулировка тока может выполняться вручную (посредством замены обмотки на трансформаторе) либо в автоматическом режиме (если система укомплектована тиристорами).

Среди станций катодной защиты, применяемых в отечественной промышленности, наиболее технологичной установкой считается Минерва-3000 (спроектированная инженерами из Франции по заказу Газпрома). Мощности данной СКЗ достаточно для эффективной защиты 30 км подземного трубопровода.

Схема станции катодной защиты

К преимуществам установки относится:

  • повышенная мощность;
  • функция восстановления после перегрузок (обновление происходит за 15 секунд);
  • наличие систем цифрового регулирования для контроля за рабочими режимами;
  • полная герметичность ответственных узлов;
  • возможность подключения оборудования для удаленного контроля.

Также широко востребованными в отечественном строительстве являются установки АСКГ-ТМ, в сравнении с Минервой-3000 они имеют уменьшенную мощность (1-5 кВт), однако в стоковой комплектации система оборудована телеметрическим комплексом, который в автоматическом режиме контролирует работу СКЗ и имеет возможность дистанционного управления.

Станции катодной защиты Минерва-3000 и АСКГ-ТМ требуют питания от электросети мощностью 220 В. Удаленное управление оборудованием выполняется посредством встроенных GPRS модулей. СКЗ имеют достаточно больше габариты — 50*40*90 см. и вес — 50 кг. Минимальный срок службы устройств составляет 20 лет.

Источник: http://trubypro.ru/vidy/vodoprovodnye/katodnaya-zaschita.html

Варианты катодной защиты трубопроводов – преимущества и недостатки способов

Содержание:

До сих пор при обустройстве протяжённых промышленных трубопроводов наиболее востребованным материалом изготовления труб является сталь.

Обладая множеством замечательных свойств, таких как механическая прочность, способность функционировать при больших значениях внутренних давления и температуры и стойкость к сезонным изменениям погоды, сталь имеет и серьёзный недостаток: склонность к коррозии, приводящей к разрушению изделия и, соответственно, неработоспособности всей системы.

Определение электрохимической защиты

Электрохимическая защита трубопроводов от коррозии – процесс, осуществляемый при воздействии постоянного электрического поля на предохраняемый объект из металлов или сплавов. Поскольку обычно доступен для работы переменный ток, используются специальные выпрямители для преобразования его в постоянный.

В случае катодной защиты трубопроводов защищаемый объект путём подачи на него электромагнитного поля приобретает отрицательный потенциал, то есть делается катодом.

Соответственно, если ограждаемый от коррозии отрезок трубы становится «минусом», то заземление, подводящееся к нему, – «плюсом» (т.е. анодом).

Антикоррозионная защита по такой методике невозможна без присутствия электролитической, с хорошей проводимостью, среды. В случае обустройства трубопроводов под землёй её функцию выполняет грунт. Контакт же электродов обеспечивается путём применения хорошо проводящих электрический ток элементов из металлов и сплавов.

Классификация методик электрохимической катодной защиты

Такой способ предупреждения коррозии был предложен в 20-х годах XIX века и поначалу использовался в судостроении: медные корпуса кораблей обшивались протекторами-анодами, значительно снижающими скорость корродирования металла.

После того, как была установлена эффективность новой технологии, изобретение стало активно применяться в других областях промышленности. Через некоторое время оно было признано одним из самых эффективных способов защиты металлов.

В настоящее время используется два основных типа катодной защиты трубопроводов от коррозии:

  1. Самый простой способ: к металлическому изделию, требующему предохранения от коррозии, подводится внешний источник электрического тока. В таком исполнении сама деталь приобретает отрицательный заряд и становится катодом, роль же анода выполняют инертные, не зависящие от конструкции, электроды.
  2. Гальванический метод. Нуждающаяся в защите деталь соприкасается с защитной (протекторной) пластиной, изготавливаемой из металлов с большими значениями отрицательного электрического потенциала: алюминия, магния, цинка и их сплавов. Анодами в этом случае становятся оба металлических элемента, а медленное электрохимическое разрушение пластины-протектора гарантирует поддержание в стальном изделии требуемого катодного тока. Через более или менее долгое время, в зависимости от параметров пластины, она растворяется полностью.

Характеристики первого метода

Этот способ ЭХЗ трубопроводов, в силу простоты, наиболее распространён. Применятся он для предохранения крупных конструкций и элементов, в частности, трубопроводов подземного и наземного типов.

Методика помогает противостоять:

  • питтинговой коррозии;
  • коррозии из-за присутствия в зоне расположения элемента блуждающих токов;
  • коррозии нержавеющей стали межкристального типа;
  • растрескиванию латунных элементов вследствие повышенного напряжения.

Характеристики второго метода

Эта технология предназначается, в отличие от первой, в том числе для защиты изделий небольших размеров. Методика наиболее популярна в США, в то время как в Российской Федерации используется редко.

Читайте также:  Что такое инвертор: разновидности и прицип работы

Причина в том, что для проведения гальванической электрохимическая защита трубопроводов необходимо наличие на изделии изоляционного покрытия, а в России магистральные трубопроводы таким образом не обрабатываются.

Особенности ЭХЗ трубопроводов

Главной причиной выхода трубопроводов из строя (частичной разгерметизации или полного разрушения отдельных элементов) является коррозия металла.

В результате образования на поверхности изделия ржавчины на его поверхности появляются микроразрывы, раковины (каверны) и трещины, постепенно приводящие к выходу системы из строя.

Особенно эта проблема актуальна для труб, пролегающих под землёй и всё время соприкасающихся с грунтовыми водами.

Принцип действия катодной защиты трубопроводов от коррозии предполагает создание разности электрических потенциалов и реализуется двумя вышеописанными способами.

После проведения измерений на местности было установлено, что необходимый потенциал, при котором замедляется любой коррозионный процесс, составляет –0,85 В; у находящихся же под слоем земли элементов трубопровода его естественное значение равно –0,55 В.

Чтобы существенно замедлить процессы разрушения материалов, нужно добиться снижения катодного потенциала защищаемой детали на 0,3 В. Если добиться этого, скорость коррозии стальных элементов не будет превышать значений 10 мкм/год.

Одну из самых серьёзных угроз металлическим изделиям представляют блуждающие токи, то есть электрические разряды, проникающие в грунт вследствие работы заземлений линий энергопередачи (ЛЭП), громоотводов или передвижения по рельсам поездов. Невозможно определить, в какое время и где они проявятся.

Разрушающее воздействие блуждающих токов на стальные элементы конструкций проявляется, когда эти детали обладают положительным электрическим потенциалом относительно электролитической среды (в случае трубопроводов – грунта). Катодная методика сообщает защищаемому изделию отрицательный потенциал, в результате чего опасность коррозии из-за этого фактора исключается.

Оптимальным способом обеспечения контура электрическим током является использование внешнего источника энергии: он гарантирует подачу напряжения, достаточного для «пробивания» удельного сопротивления грунта.

Что нужно для катодной электрохимической защиты

Для обеспечения снижения коррозии на участках пролегания трубопроводов используются особые приспособления, называемые станциями катодной защиты (СКЗ).

Эти станции включают в себя следующие элементы:

  • заземление, выступающее в роли анода;
  • генератор постоянного тока;
  • пункт контроля, измерений и управления процессом;
  • соединительные приспособления (провода и кабели).

Станции катодной защиты вполне эффективно выполняют основную функцию, при подключении к независимому генератору или ЛЭП защищая одновременно несколько расположенных поблизости участков трубопроводов.

Регулировать параметры тока можно как вручную (заменяя трансформаторные обмотки), так и в автоматизированном режиме (в случае, когда в контуре имеются тиристоры).

Плюсы «Минервы-3000»:

  • высокий уровень мощности;
  • возможность быстрого восстановления после возникновения перегрузок (не более 15 секунд);
  • оснащённость необходимыми для контроля рабочих режимов узлами цифровой регулировки системы;
  • абсолютно герметичные ответственные узлы;
  • возможность контролировать функционирование установки удалённо, при подключении специального оборудования.

Вторая наиболее популярная в России СКЗ – «АСКГ-ТМ» (адаптивная телемеханизированная станция катодной защиты). Мощность таких станций меньше, чем упомянутых выше (от 1 до 5 кВт), но их возможности автоматического контроля работы улучшены за счёт наличия в исходной комплектации телеметрического комплекса с дистанционным управлением.

Обе станции требуют источника напряжения мощностью 220 В, управляются с помощью модулей GPRS и характеризуются достаточно скромными габаритами — 500×400×900 мм при весе 50 кг. Срок эксплуатации СКЗ – от 20 лет.

Источник: https://trubaspec.com/montazh-i-remont/varianty-katodnoy-zashchity-truboprovodov-preimushchestva-i-nedostatki-sposobov.html

Катодная защита трубопроводов от коррозии, схема, принцип действия и видео

Как бы ни был популярен пластик, но большинство магистралей, проложенных в грунте (заглубленных) монтируется из стальных или чугунных образцов.

Существенным минусом таких трубопроводов, при всех неоспоримых достоинствах, является подверженность материалов коррозии.

Независимо от типа (эл/химическая, вызванная блуждающими токами или иным фактором), она существенно снижает эксплуатационный срок инженерной коммуникации или отдельной ее части.

В зависимости от местных условий и экономической целесообразности на практике реализуется несколько методик защиты трубопроводов. Все они подразделяются на 2 группы – активные и пассивные. Катодная защита относится к первой. Ее особенностям, технологии обустройства, принципу функционирования посвящен данный материал.

Схема катодной защиты трубопроводов

Состав

  • Источник пром/напряжения.
  • Преобразователь тока (переменный/постоянный).
  • Анодный заземлитель (одинарный или комбинированный).
  • Соединительные элементы цепи (проводники из металла).

Дополнительно

  • Вольтметр.
  • Контрольный электрод (медно-сульфатный).

Принцип действия

Подключение

Роль катода в этой схеме играет сам трубопровод. Он присоединяется к «-» выпрямителя. Соответственно, анод – к его «+».

Условие функционирования

Наличие электролитической среды (в данном случае – почвы) и анода из токопроводящего материала. Это не обязательно должен быть металл.

Порядок работы защиты

При подаче напряжения в схему возникает электрическое поле, создающее на участке трубопровода катодную поляризацию.

Не вдаваясь в тонкости протекающих процессов, достаточно сказать, что в результате от коррозии разрушается не трубопровод, а анод, так как она образуется именно в области «+» напряжения.

Заземлитель через определенное время заменить гораздо легче и дешевле, чем одну или несколько труб на трассе.

Особенности схем катодной защиты

  • В качестве источника питания могут использоваться как стационарные линии, так и мобильные генераторы.
  • Максимальный потенциал защитного поля для трубопроводов, не имеющих специального покрытия, не регламентирован. В остальных случаях (например, если элементы трассы имеют полимерную изоляцию) рассчитывается индивидуально для каждой схемы.
  • В зависимости от специфики трубопровода анодные заземлители могут отличаться способом расстановки (распределенные, сосредоточенные) и положением относительно уровня грунта (протяженные, глубинные).
  • Материал анода выбирается для конкретной почвы из расчета эксплуатации без замены минимум 15 лет. Этот срок можно искусственно увеличить, если поместить заземлитель в какую-либо среду. Например, в измельченный кокс.

Источник: http://ISmith.ru/metalworking/katodnaya-zashhita-truboprovodov-ot-korrozii/

Устройство электрохимзащиты для газопровода

Коррозия оказывает пагубное влияние на техническое состояние подземных трубопроводов, под ее воздействием нарушается целостность газопровода, появляются трещины. Для защиты от такого процесса применяют электрохимзащиту газопровода.

На состояние стальных трубопроводов оказывает влияние влажность почвы, ее структура и химический состав. Температура сообщаемого по трубам газа, блуждающие в земле токи, вызванные электрифицированным транспортом и климатические условия в целом.

Виды коррозии:

  • Поверхностная. Распространяется сплошным слоем по поверхности изделия. Представляет наименьшую опасность для газопровода.
  • Местная. Проявляется в виде язв, щелей, пятен. Наиболее опасный вид коррозии.
  • Усталостное коррозионное разрушение. Процесс постепенного накопления повреждений.

Механизм разрушения металлов при коррозии

Методы электрохимзащиты от коррозии:

  • пассивный метод;
  • активный метод.

Суть пассивного метода электрохимзащиты заключается в нанесении на поверхность газопровода специального защитного слоя, препятствующего вредному воздействию окружающей среды. Таким покрытием может быть:

  • битум;
  • полимерная лента;
  • каменноугольный пек;
  • эпоксидные смолы.

На практике редко получается нанести электрохимическое покрытие равномерно на газопровод. В местах зазоров с течением времени металл все же повреждается.

Активный метод электрохимзащиты или метод катодной поляризации заключается в создании на поверхности трубопровода отрицательного потенциала, предотвращающего утечку электричества, тем самым предупреждая появление коррозии.

Принцип действия электрохимзащиты

Чтобы защитить газопровод от коррозии, нужно создать катодную реакцию и исключить анодную. Для этого на защищаемом трубопроводе принудительно создается отрицательный потенциал.

Принципы построения локальной катодной защиты

В грунте размещают анодные электроды, подключают отрицательный полюс внешнего источника тока непосредственно к катоду – защищаемому объекту. Для замыкания электрической цепи, положительный полюс источника тока соединяется с анодом – дополнительным электродом, установленным в общей среде с защищаемым трубопроводом.

Анод в данной электрической цепи выполняет функцию заземления. За счет того, что анод имеет более положительный потенциал, чем металлический объект, происходит его анодное растворение.

Процесс коррозии подавляется под воздействием отрицательно заряженного поля защищаемого объекта. При катодной защите от коррозии, процессу порчи будет подвергается непосредственно анодный электрод.

Для увеличения срока эксплуатации анодов, их изготавливают из инертных материалов, устойчивых к растворению и другим воздействиям внешних факторов.

Станция электрохимзащиты

Станция устанавливается на земле рядом с газопроводом. Она должна иметь степень защиты IP34 и выше, так как работает на открытом воздухе.

Станции катодной защиты могут иметь различные технические параметры и функциональные особенности.

Типы станций катодной защиты:

  • трансформаторные;
  • инверторные.

Трансформаторные станции электрохимзащиты постепенно отходят в прошлое. Они представляют собой конструкцию из трансформатора, работающего с частотой 50 Гц и тиристорного выпрямителя. Минусом таких устройств является несинусоидальная форма генерируемой энергии. Вследствие чего, на выходе происходит сильное пульсирование тока и снижается его мощность.

Инверторная станция электрохимзащиты имеет преимущество у трансформаторной. Ее принцип основан на работе высокочастотных импульсных преобразователей.

Особенностью инверторных устройств является зависимость размера трансформаторного блока от частоты преобразования тока. При более высокой частоте сигнала требуется меньше кабеля, снижаются тепловые потери.

В инверторных станциях, благодаря сглаживающим фильтрам, уровень пульсации производимого тока имеет меньшую амплитуду.

Электрическая цепь, которая приводит в работу станцию катодной защиты, выглядит так: анодное заземление – грунт – изоляция объекта защиты.

При установке станции защиты от коррозии учитываются следующие параметры:

  • положение анодного заземления (анод-земля);
  • сопротивление грунта;
  • электропроводимость изоляции объекта.

Установки дренажной защиты для газопровода

При дренажном способе электрохимзащиты источник тока не требуется, газопровод с помощью блуждающих в земле токов сообщается с тяговыми рельсами железнодорожного транспорта. Осуществляется электрическая взаимосвязь благодаря разности потенциалов железнодорожных рельсов и газопровода.

Схема электрических дренажей

Посредством дренажного тока создается смещение электрического поля находящегося в земле газопровода. Защитную роль в данной конструкции играют плавкие предохранители, а также автоматические выключатели максимальной нагрузки с возвратом, которые настраивают работу дренажной цепи после спада высокого напряжения.

Система поляризованных электродренажей осуществляется с помощью соединений вентильных блоков. Регулирование напряжения при такой установке осуществляется переключением активных резисторов. Если метод дал сбой, применяют более мощные электродренажи в виде электрохимзащиты, где анодным заземлителем служит железнодорожная рельса.

Установки гальванической электрохимзащиты

Использование протекторных установок гальванической защиты трубопровода оправданно, если вблизи объекта отсутствует источник напряжения – ЛЭП, или участок газопровода недостаточно внушителен по размерам.

Гальваническое оборудование служит для защиты от коррозии:

Гальваническая электрохимзащита

  • подземных металлических сооружений, не подсоединенных электрической цепью к внешним источникам тока;
  • отдельных незащищенных частей газопроводов;
  • частей газопроводов, которые изолированы от источника тока;
  • строящихся трубопроводов, временно не подключенных к станциям защиты от коррозии;
  • прочих подземных металлических сооружений (сваи, патроны, резервуары, опоры и др.).
Читайте также:  Изготовление точечной сварки своими руками

Гальваническая защита сработает наилучшим образом в почвах с удельным электрическим сопротивлением, находящимся в пределах 50 Ом.

Установки с протяженными или распределенными анодами

При использовании трансформаторной станции защиты от коррозии ток распределяется по синусоиде. Это неблагоприятным образом сказывается на защитном электрическом поле. Происходит либо избыточное напряжение в месте защиты, которое влечет за собой высокий расход электроэнергии, либо неконтролируемая утечка тока, что делает электрохимзащиту газопровода неэффективной.

Схема анодной защиты трубопроводов

Практика использования протяженных или распределенных анодов помогает обойти проблему неравномерного распределения электричества. Включение распределенных анодов в схему электрохимзащиты газопровода способствует увеличению зоны защиты от коррозии и сглаживанию линии напряжения. Аноды при такой схеме размещаются в земле, на протяжении всего газопровода.

Регулировочное сопротивление или специальное оборудование обеспечивает изменение тока в необходимых пределах, изменяется напряжение анодного заземления, при помощи этого регулируется защитный потенциал объекта.

Если используется сразу несколько заземлителей, напряжение защитного объекта можно изменять, меняя количество активных анодов.

ЭХЗ трубопровода посредством протекторов основана на разности потенциалов протектора и газопровода, находящегося в земле. Почва в данном случае представляет собой электролит; металл восстанавливается, а тело протектора разрушается.

Видео: Защита от блуждающих токов

Источник: https://promzn.ru/gazovaya-promyshlennost/elektrohimzashhita-dlya-gazoprovoda.html

Электрохимическая защита трубопроводов от коррозии — электронный каталог продукции,разработка мобильных приложений,АОС,автоматизированные обучающие системы,семинары по нефтегазовой тематике,разработка СТУ,СТУ

Электрохимическая защита от коррозии состоит из катодной и дренажной защиты. Катодная защита трубопроводов осуществляется двумя основными методами: применением металлических анодов-протекторов (гальванический протекторный метод) и применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс — с анодным заземлением (электрический метод).

Рис. 1. Принцип работы катодной защиты

Гальваническая протекторная защита от коррозии

Наиболее очевидным способом осуществления электрохимической защиты металлического сооружения, имеющего непосредственный контакт с электролитической средой, является метод гальванической защиты, в основу которого положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы.

Таким образом, если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом-протектором и будет разрушаться, защищая металл с менее отрицательным потенциалом. Протекторы, по существу, служат портативными источниками электроэнергии.

В качестве основных материалов для изготовления протекторов используются магний, алюминий и цинк. Из сопоставления свойств магния, алюминия и цинка видно, что из рассматриваемых элементов магний обладает наибольшей электродвижущей силой.

В то же время одной из наиболее важных практических характеристик протекторов является коэффициент полезного действия, показывающий долю массы протектора, использованной на получение полезной электрической энергии в цепи. К.П.Д.

протекторов, изготовленных из магния и магниевых сплавов, редко превышают 50 % в, в отличие от протекторов на основе Zn и Al с К.П.Д. 90 % и более.

Рис. 2. Примеры магниевых протекторов

Обычно протекторные установки применяются для катодной защиты трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями, отдельных участков трубопроводов, а также резервуаров, стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай, и других сосредоточенных объектов.

В то же время протекторные установки очень чувствительны к ошибкам в их размещении и комплектации. Неправильный выбор или размещение протекторных установок приводит к резкому снижению их эффективности.

Катодная защита от коррозии

Наиболее распространенный метод электрохимической защиты от коррозии подземных металлических сооружений — это катодная защита, осуществляемая путем катодной поляризации защищаемой металлической поверхности.

На практике это реализуется путем подключения защищаемого трубопровода к отрицательному полюсу внешнего источника постоянного тока, называемого станцией катодной защиты. Положительный полюс источника соединяют кабелем с внешним дополнительным электродом, сделанным из металла, графита или проводящей резины.

Этот внешний электрод размещается в той же коррозионной среде, что и защищаемый объект, в случае подземных промысловых трубопроводов, в почве.

Таким образом, образуется замкнутая электрическая цепь: дополнительный внешний электрод — почвенный электролит — трубопровод — катодный кабель — источник постоянного тока — анодный кабель.

В составе данной электрической цепи трубопровод является катодом, а дополнительный внешний электрод, присоединенный к положительному полюсу источника постоянного тока, становится анодом. Данный электрод называется анодным заземлением. Отрицательно заряженный полюс источника тока, присоединенный к трубопроводу, при наличии внешнего анодного заземления катодно поляризует трубопровод, при этом потенциал анодных и катодных участков практически выравнивается.

Таким образом, система катодной защиты состоит из защищаемого сооружения, источника постоянного тока (станции катодной защиты), анодного заземления, соединительных анодной и катодной линий, окружающей их электропроводной среды (почвы), а также элементов системы мониторинга — контрольно-измерительных пунктов.

Дренажная защита от коррозии

Дренажная защита трубопроводов от коррозии блуждающими токами  осуществляется путем направленного отвода этих токов к источнику или в землю. Установка дренажной защиты может быть нескольких видов: земляной, прямой, поляризованный и усиленный дренажи.

Рис. 3. Станция дренажной защиты

Земляной дренаж осуществляется заземлением трубопроводов дополнительными электродами в местах их анодных зон, прямой дренаж — созданием электрической перемычки между трубопроводом и отрицательным полюсом источника блуждающих токов, например рельсовой сетью электрифицированной железной дороги. Поляризованный дренаж в отличие от прямого обладает только односторонней проводимостью, поэтому при появлении положительного потенциала на рельсах дренаж автоматически отключается. В усиленном дренаже дополнительно в цепь включается преобразователь тока, позволяющий увеличивать дренажный ток.

P.S. Обзор технических решений по ЭХЗ других металлических конструкций и сооружений можно прочитать здесь.

Хотите узнать больше о коррозии металлических конструкций и методах противокоррозионной защиты?

Скачайте наше специализированное учебно-справочное приложение «Защита от коррозии»

Источник: http://transenergostroy.ru/blog/elektrohimicheskaya_zashhita_truboprovodov_ot_korrozii.html

Как организовать катодную защиту трубопроводов от коррозии?

Трубопроводы, пролегающие под землёй, подвергаются разрушающему действию коррозии. Коррозия трубопровода поражает металлические трубы, если возникают условия, когда атомы металла могут перейти в состояние иона.

Чтобы нейтральный атом стал, ионом, необходимо отдать электрон, а это возможно если есть анод, который его примет. Такая ситуация возможна при возникновении разности потенциалов между отдельными участками трубы: один участок анод, другой катод.

Причины протекания электролитических реакций

Причин образования разности потенциалов (величина его значения) на отдельных участках трубы несколько:

  • различные составы грунта по физическим и химическим свойствам;
  • неоднородность металла;
  • влажность почвы;
  • значение рабочей температуры, транспортируемого вещества;
  • показатель кислотности грунтового электролита;
  • прохождение линии электротранспорта, который создаёт блуждающие токи.

В результате могут возникнуть два вида коррозийного повреждения:

  • поверхностное, которое к разрушению трубопровода не приводит;
  • местное, в результате которого образуются раковины, щели, растрескивания.

Виды предохранения от коррозии

Чтобы уберечь трубы от разрушения, применяют защиту трубопроводов от коррозии.

Существует два основных способа защиты:

  • пассивный, при котором вокруг труб создаётся защитная оболочка полностью отделяющая их от грунта. Обычно это покрытие из битума, эпоксидной смолы, полимерной ленты;
  • активный, позволяющий управлять электрохимическими процессами, которые протекают в местах соприкосновения трубы и грунтового электролита.

Активный метод разделяется на три вида предохранения:

  • катодный;
  • протекторный;
  • дренажный.

Дренажный осуществляет защиту трубопроводов от коррозии производимой блуждающими токами. Такие токи отводят в направлении создающего их источника или напрямую в почвенный слой. Дренаж может быть земляным (заземление анодных зон трубопровода), прямым (отсоединение от отрицательного полюса источника блуждающего тока). Реже используют дренаж поляризованный и усиленный.

Способы организации катодной защиты

Катодная защита трубопровода от коррозии образуется, если использовать внешнее электрическое поле для организации катодной поляризации трубопровода, а повреждение перевести на внешний анод, который подвергнется разрушению.

Катодная разделяется на два вида:

  • гальваническая с использованием анодов-протекторов, для изготовления которых используют сплавы магния, алюминия, цинка;
  • электрическая, в которой применяется внешний источник постоянного тока с схемой подключения: минус на трубу, плюс — на заземлённый анод.

Основа гальванического способа катодной защиты: использование свойства металла иметь отличные по величине потенциалы, когда их применяют в виде электрода. Если в электролите находятся две металла с разным значением потенциала, то разрушаться будет тот, который имеет меньшее значение.

Материал для протектора подбирается такой, чтобы выполнялись определённые требования:

  • отрицательный потенциал с большим значение в сравнении с потенциалом трубопровода;
  • значительный КПД;
  • высокий показатель удельной токоотдачи;
  • малая анодная поляризуемость, чтобы не образовывались окисные плёнки.

Чтобы повысить КПД и действенность защиты, протекторы погружают в активатор, который снижает собственную коррозию протектор и величину сопротивления растеканию тока с протектора, уменьшает анодную поляризуемость.

Протекторная защитная установка состоит из протектора, активатора, проводника, соединяющего протектор и трубопровод, пункта для контроля и проведения замера электрических параметров.

Эффективность протекторной защиты от коррозии трубопроводов зависит от величины удельного сопротивления грунта. Она хорошо действует, если этот показатель не превышает 50 Ом*м, при большем значении защита будет частичной. Для повышения действенности используют ленточные протекторы.

Ограничением для использования протекторной защиты является электрический контакт трубопровода и смежной протяжённой коммуникацией.

Станции катодной защиты

Более сложный в организации, но самый эффективный — это электрический. Для его организации сооружают внешний источник постоянного тока — станцию катодной защиты. В электрической станции преобразуется переменный ток в постоянный.

Элементы катодной защиты:

  • анодное заземление;
  • линия соединения постоянного тока;
  • защитное заземление;
  • источник постоянного тока;
  • катодный вывод.

Электрический метод является аналогом процесса электролиза.

Под действием внешнего поля источника тока валентные электроны двигаются в сторону от анодного заземления к источнику тока и трубе. Заземленный анод постепенно разрушается. А у трубопровода от источника постоянного тока поступающий переизбыток свободных электронов приводит к деполяризации (как у катода при электролизе).

Чтобы предотвратить коррозийное разрушение нескольких труб, сооружают несколько станций и устанавливают соответствующее количество анодов.

Источник: http://stroitel5.ru/kak-organizovat-katodnuyu-zashhitu-truboprovodov-ot-korrozii.html

Электрохимическая защита технологических трубопроводов

03 декабря 2015 г.

При укладке в траншею изолированного трубопровода и его последующей засыпке изоляционное покрытие может быть повреждено, а в процессе эксплуатации трубопровода оно постепенно стареет (теряет свои диэлектрические свойства, водоустойчивость, адгезию). Поэтому при всех способах прокладки, кроме надземной, трубопроводы подлежат комплексной защите от коррозии защитными покрытиями и средствами электрохимической защиты (ЭХЗ) независимо от коррозионной активности грунта.

Читайте также:  Особенности процесса шлифовки и полировки металла

К средствам ЭХЗ относятся катодная, протекторная и электродренажная защиты.

Защита от почвенной коррозии осуществляется катодной поляризацией трубопроводов. Если катодная поляризация производится с помощью внешнего источника постоянного тока, то такая защита называется катодной, если же поляризация осуществляется присоединением защищаемого трубопровода к металлу, имеющему более отрицательный потенциал, то такая защита называется протекторной.

Катодная защита

Принципиальная схема катодной защиты показана на рисунке.

Источником постоянного тока является станция катодной защиты 3, где с помощью выпрямителей переменный ток от вдольтрассовой ЛЭП 1, поступающий через трансформаторный пункт 2, преобразуется в постоянный.

Отрицательным полюсом источник с помощью соединительного провода 4 подключен к защищаемому трубопроводу 6, а положительным — к анодному заземлению 5. При включении источника тока электрическая цепь замыкается через почвенный электролит.

Принципиальная схема катодной защиты

1 — ЛЭП; 2 — трансформаторный пункт; 3 — станция катодной защиты; 4 — соединительный провод; 5 — анодное заземление; 6 — трубопровод

Принцип действия катодной защиты следующий. Под воздействием приложенного электрического поля источника начинается движение полусвободных валентных электронов в направлении «анодное заземление — источник тока— защищаемое сооружение».

Теряя электроны, атомы металла анодного заземления переходят в виде ион-атомов в раствор электролита, т.е. анодное заземление разрушается. Ион-атомы подвергаются гидратации и отводятся в глубь раствора. У защищаемого же сооружения вследствие работы источника постоянного тока наблюдается избыток свободных электронов, т.е.

создаются условия для протекания реакций кислородной и водородной деполяризации, характерных для катода.

Подземные коммуникации нефтебаз защищают катодными установками с различными типами анодных заземлений. Необходимая сила защитного тока катодной установки определяется по формуле

Jдр=j3·F3·K0

где j3 — необходимая величина защитной плотности тока; F3 — суммарная поверхность контакта подземных сооружений с грунтом; К0 — коэффициент оголенности коммуникаций, величина которого определяется в зависимости от переходного сопротивления изоляционного покрытия Rnep и удельного электросопротивления грунта рг по графику, приведенному на рисунке ниже.

https://www.youtube.com/watch?v=ZTmNyBKVcJ0

Необходимая величина защитной плотности тока выбирается в зависимости от характеристики грунтов площадки нефтебазы в соответствии с таблицей ниже.

Протекторная защита

Принцип действия протекторной защиты аналогичен работе гальванического элемента.

Два электрода: трубопровод 1 и протектор 2, изготовленный из более электроотрицательного металла, чем сталь, опущены в почвенный электролит и соединены проводом 3.

Так как материал протектора является более электроотрицательным, то под действием разности потенциалов происходит направленное движение электронов от протектора к трубопроводу по проводнику 3.

Одновременно ион-атомы материала протектора переходят в раствор, что приводит к его разрушению. Сила тока при этом контролируется с помощью контрольно-измерительной колонки 4.

Зависимость коэффициентов оголенности подземных трубопроводов от переходного сопротивления изоляционного покрытия для грунтов удельным сопротивлением, Ом-м

1 — 100; 2 — 50; 3 — 30; 4 — 10; 5 — 5

Зависимость защитной плотности тока от характеристики грунтов

Тип грунта рп Омм А, А/м2
Влажный глинистый грунт:
— pH >8 15 0,033
pH = 6-8 15 0,160
— с примесью песка 15 0,187
Влажный торф (pH

Источник: http://ros-pipe.ru/clauses/elektrokhimicheskaya-zaschita-tekhnologicheskikh-t/

ПОИСК

    ЖЕРТВЕННЫЕ АНОДЫ. Если вспомогательный анод изготовлен из металла более активного (в соответствии с электрохимическим рядом напряжений), чем защищаемый, то в гальваническом элементе протекает ток — от электрода к защищаемому объекту.

Источник приложенного тока (выпрямитель) можно не использовать, а электрод в этом случае называют протектором (рис. 12.2). В качестве протекторов для катодной защиты используют сплавы на основе магния или алюминия, реже — цинка. Протекторы, по существу, служат портативными источниками электроэнергии.

Они особенно полезны, когда имеются трудности с подачей электроэнергии или когда сооружать специальную линию электропередачи нецелесообразно или неэкономично.

Разность потенциалов разомкнутой цепи магния и стали составляет примерно 1 В (в морской воде магний имеет Е = —1,3 В), так что одним анодом может быть защищен только ограниченный участок трубопровода, особенно в грунтах с высоким удельным сопротивлением. Столь небольшая разность потенциалов иногда [c.

218]
    ОСОБЕННОСТИ КАТОДНОЙ ЗАЩИТЫ МОРСКИХ ТРУБОПРОВОДОВ [c.147]

    Представляет особый интерес материал по вопросам коррозии трубопроводов и других сооружений, соприкасающихся с морской водой, а также по специфическим особенностям катодной защиты судов. [c.14]

    Особенно важно использование катодной защиты для стационарных нефтегазопромысловых сооружений, трубопроводов и хранилищ к ним на континентальном шельфе.

Подобные сооружения не могут быть введены в сухой док для восстановления защитного покрытия, поэтому Э. з. является осн. методом предотвращения коррозии.

Морская нефтепромысловая вышка, как правило, снабжена в своей подводной части протекторными анодами (на одну вышку приходится до Юти более протекторных сплавов). [c.458]

    Защита протекторами широко применяется при борьбе с морской коррозией и в последнее время в ряде случаев почвенной коррозией. Катодная поляризация от внешнего источника напряжения находит также широкое применение, например в борьбе с почвенной коррозией протяженных объектов (трубопроводов).

Особенно удобно пользоваться электрохимической защитой, если по условиям эксплуатации нельзя использовать лакокрасочные защитные покрытия или если невозможно периодически их возобновлять.

Подобные условия мы имеем, например, при эксплуатации свайных основ морских нефтепромыслов, трубопроводов, заложенных в почву, и некоторых других сооружений и конструкций. [c.192]

    Хотя катодная защита давно известна (она начала применяться в промышленном масштабе уже в первом десятилетии нашего века), особенно интенсивно этот метод стал развивваться в последнее время при внедрении стальных трубопроводов для перекачивания жцдкого и газообразного горочего и эксплуатации морских нефтяных месторождений. Все морские сооружения, как современные корпуса судов, портоше конструкции, трубопроводы, платформы и т.д.). так и перспективные (служащие дня эксплуатации теп- [c.56]

Смотреть страницы где упоминается термин Особенности катодной защиты морских трубопроводов: [c.245]   Смотреть главы в:

Противокоррозионная защита трубопроводов и резервуаров -> Особенности катодной защиты морских трубопроводов

Противокоррозионная защита трубопроводов и резервуаров -> Особенности катодной защиты морских трубопроводов

Защита катодная

Ток катодный

Трубопроводы катодная защита

© 2018 chem21.info Реклама на сайте

Источник: http://chem21.info/info/1479078/

Защита трубопроводов от коррозии

Сегодня без разных видов трубопроводов невозможно представить себе жизнью Они находятся практически в каждом населенном пункте и обеспечивают коммуникации.

Производств труб для прокладки под землей осуществляется из металлов самых разных типов. Со временем они подвергаются коррозии, что ведет к их разрушению.

Данный процесс является неизбежным, но его можно отсрочить с помощью некоторых защитных способов.

Защита подземных трубопроводов от коррозии

Трубопроводы разных видов нашли широкое применение в современном мире. Они практически всегда спрятаны пол землей. Процесс образования коррозии на них не относится к разряду тех, которые можно избежать.

Его можно только отсрочить на некоторый промежуток времени. Для этого используются специальные составы, которые на металлической поверхности образуют небольшую защитную пленку.

Она не дает агрессивной подземной среде влиять на структуру трубопровода.

Защита трубопроводов от коррозии направлена на то, чтобы остановить все окислительные процессы.

Защитная пленка должна находиться и внутри и снаружи по понятным причинам. Только в этом случае можно предотвратить быстрее появление коррозийного налета, который обладает разрушающими свойствами.

Защита трубопроводов необходима для разных видов коммуникаций. Сегодня защитные способы применяются не только для водопроводных труб, которые страдают от появления ржавчины, но и для газопровдов.

Защита водопроводных труб необходимо по причине того, что по ним вода поступает на предприятия и в дома людей. Она должна быть без всяких примесей.

Если трубы ржавые, то водопроводная жидкость будет иметь неприятный оранжевый оттенок. Такая вода не годится для употребления в пищу.

Ее даже не используют на промышленных объектах, потому что она может повлиять на свойства выпускаемой продукции.

Таблица. Скорость коррозии металла

БаллСкорость коррозииГруппа стойкости
1 10.1 нестойкие

Способы защиты трубопроводов от коррозии

Сегодня имеется большое количество методов защиты водопроводов от налета коррозии. Они основаны на том, чтобы металл, из которого сделаны трубы, вступил в реакцию с вводимыми веществами и растворами. В результате образуется небольшая пленка, которая обеспечивает защиту. В настоящее время выделяют следующие способы защиты трубопроводов от коррозии:

Электрохимическая защита трубопроводов от коррозии

Трубопроводы данным методом обрабатываются уже много лет. Для этой цели используются растворы электролитов. Благодаря данному методу на металлической поверхности труб появляется плотная защитная пленка высокой прочности. Она не дает агрессивной среде проникнуть в глубокие слои труб. Эффект защиты сохраняется на длительный период.

Катодная защита трубопроводов от коррозии

Данный процесс представляет собой использование электрического тока. Он подается в постоянном режиме, чтобы пленка для защиты металла не разрушалась.

Протекторная защита от коррозии трубопроводов

Данный способ защиты является одним из самых распространенных. Она является самой доступной и не затратной. Ведь для ее воплощения нет необходимости тратить электрический ток.

Этот методы заключается в нанесении на поверхность любых труб из металлов сплавов других элементов, которые образуют на их поверхности плотную защитную пленку. Благодаря ней все процессы окисления прекращаются. Для этой цели используются сплавы многих металлов: магний, цинк.

В некоторых ситуациях применяется алюминиевый сплав. Данный метод подходи для того, чтобы защищать трубы, которые располагаются под землей.

Анодная защита от коррозии трубопроводов

Данный защитный метод основан на методе анодирования. Он не часто используется по причине того, что он является не экономичным. Для него постоянно требуется подача электрического тока, что приводит к увеличению денежных и энергетических затрат.

Защита трубопровода от коррозии подлит срок их службы

У всех методов защиты трубопроводов имеется большое количество достоинств. Они заключаются в:

  • увеличении уровня прочности труб,
  • увеличении уровня устойчивости к влиянию агрессивной среды,
  • продлении срока службы трубопроводов самых разных типов,
  • увеличении твердости поверхности труб и внутри и снаружи.

Благодаря всем методам защиты удается обеспечить длительный эксплуатационный срок всех трубопроводов. Они дают им возможность прослужить не мене десятка лет.

Видео про защиту трубопроводов от коррозии

Источник: http://lkmprom.ru/clauses/tekhnologiya/zaschita-truboprovodov-ot-korrozii-sposoby-i-vidy/

Ссылка на основную публикацию