Движение жидкости в начале трубы

Как следует из уравнения Бернулли, для компенсации потерь энергии (потерь напора) энергия в начале потока должна быть больше, чем в конце.

Источники энергии потока жидкости. Начальную энергию со­здают в форме удельной потенциальной энергии положения (гео­метрического напора) либо удельной потенциальной энергии дав­ления (пьезометрического напора).

Потенциальную энергию положения запасают в напорных ба­ках (рис. 6.8, б), поднимая жидкость в поле сил тяжести на неко­торую высоту , которая и является начальным геометрическим напором.

Если на поверхности жидкости в замкнутом аппарате создать давление газа (рис. 6.8, б), то удельная потенциальная энергия давления также обеспечит движение жидкости в трубо­проводе. Такие аппараты называют монтежю.

Наиболее часто энергию в начале трубопровода создают насо­сом (рис. 6.8, в). Насос — это гидравлическая машина, предназна­ченная для передачи энергии потоку жидкости. Основная доля этой энергии — потенциальная энергия давления и частично — кине­тическая.

Потери напора по длине потока. Когда передвигают книгу по столу, то затрачивают энергию на преодоление силы трения о стол.

При движении жидкости энергия будет затрачиваться на пре­одоление сил трения в жидкости.

Экспериментально доказано, что при движении жидкости на стенке трубы образуется тончай­ший неподвижный слой этой жидкости. Поэтому даже на стенке трубы сохраняется жидкостное трение.

Движение жидкости в начале трубы

Рис. 6.8. Источники энергии, обеспечивающие движение жидкости по трубам: а — напорный бак; б — монтежю; в — насос; — геометрический напор; — давление на поверхности жидкости

Движение жидкости в начале трубы

где — коэффициент трения; l — длина трубы; d — ее диаметр: v2/(2g) — скоростной напор.

Очевидно, что чем больше длина трубы /, тем значительнее затраты энергии (напора) на преодоление трения. И наоборот, с увеличением диаметра трубы d затраты энергии уменьшаются, так как поверхность трения становится относительно меньше.

Влияние шероховатости на величину потерь напора обусловле­но образованием вихрей на выступах неровностей трубы, что тре­бует затрат некоторой доли энергии потока. Различают абсолют­ную и относительную шероховатость.

Абсолютная шероховатость (е) — это высота выступов неровно­стей на стенках трубы. Она зависит от материала и способа изго­товления трубы. Значения абсолютной шероховатости приводятся в справочниках.

Относительная шероховатость — это отношение абсолютной шероховатости к диаметру трубы (e/d). При определении коэффи­циента трения обычно используют обратную величину — харак­теристику шероховатости (d/e).

При увеличении шероховатости возрастает число вихрей и по­вышаются потери напора. Например, потери напора в чугунной трубе больше, чем в стеклянной, при прочих равных условиях.

Потери напора на местных сопротивлениях. В трубопроводе ско­рость жидкости может изменяться по величине и направлению из-за наличия поворотов канала, сужений, установки различных регулирующих устройств и т.д.

На таких участках, называемых мест­ными гидравлическими сопротивлениями, вследствие инерции жид­кость отрывается от стенок и образуются вихревые зоны. На фор­мирование вихрей затрачивается часть энергии потока.

Примера­ми местных сопротивлений могут служить внезапное расширение потока и плавный поворот (отвод) трубы, показанные на рис. 6.9. В первом случае изменяется значение скорости, во втором — ее направление.

Рис. 6.9. Примеры местных гид­равлических сопротивлений- I — внезапное расширение потока- I — плавный поворот (отвод) трубы  
  • Потери напора на отдельном местном сопротивлении оп­ределяют по формуле

где — коэффициент местного сопротивления. Величина зависит от вида местного гидравлического сопротивления (ее значения опубликованы в справочной литературе).

Полные потери напора в трубопроводе. Производственные тру­бопроводы разнообразны как по расположению в пространстве, таки по оснащению их устройствами управления и вспомогатель­ным оборудованием.

Устройства управления служат для регулирования расхода жид­кости или полного перекрытия потока (кран, вентиль, задвиж­ка), ограничения давления в трубопроводе (предохранительный клапан), пропускания жидкости лишь в одном направлении (об­ратный клапан) и других целей.

К вспомогательным устройствам, устанавливаемым на трубопро­водах, относятся очистители жидкости (фильтры), гидроаккуму­ляторы (устройства для погашения гидравлического удара) и др.

Все элементы трубопроводов на гидравлических схемах имеют условные стандартные изображения. Саму трубу изображают сплош­ной линией.

На рис. 6.10 представлен пример схемы простого трубопровода. Его начало помечено цифрой 1, а конец — цифрой 2. Высота подъе­ма жидкости обозначена . Движение жидкости по трубопроводу сопровождается потерями напора одновременно по длине и на местных сопротивлениях. Их суммирование позволяет определить полные потери напора  в трубопроводе. Для приведенной схемы

Рис. 6.10. Пример схемы простого трубопровода: 1,2— соответственно начало и конец трубопровода; , р2 — давления; Т — трубопровод (гидролиния); 3 — задвижка; ОК — обратный клапан; Ф — фильтр; — высота подъема жидкости; — объемный расход жидкости  

 где , — потери напора по длине (на трение); — потери на одном отводе — плавном повороте (всего их два); — на преодоление сопротивления трубопроводной арматуры — задвиж­ки, обратного клапана и фильтра; — потери напора на выходе из трубы в резервуар. Заметим, что место выхода из трубы являет­ся частным случаем внезапного расширения, когда скорость жид­кости падает до нуля (в резервуаре).

Потребный напор. Пьезометрический напор в начале трубопро­вода , необходимый для пропускания по нему жид­кости с заданным расходом, называют потребным напором . Исходя из его значения подбирают марку насоса.

Обеспечение потребного напора (удельной энергии) в трубо­проводе сопряжено с подъемом жидкости на высоту , создани­ем необходимого пьезометрического напора в конце трубопрово­да преодолением общих потерь напора в трубо­проводе. Эти затраты удельной энергии можно представить в сле­дующем виде;

(6.7)

Трубопровод, схема которого приведена на рис. 6.10, называют простым, так как он не имеет ответвлений. Трубопроводы с ответ­влениями называют сложными.

В производственной практике применяют два основных вида сложных трубопроводов: с параллельным соединением труб и слож­ный тупиковый трубопровод.

Пример схемы параллельного соединения труб представлен на рис. 6.11. Здесь общий магистральный поток жидкости с расходом разделяется в точке М на параллельные потоки с расходами в ветвях, равными и . В точ­ке N потоки сливаются. Очевид­но, что расход в магистрали ра­вен сумме расходов в ветвях:

Рис. 6.11. Пример схемы параллель­ного соединения труб: М, N — точки разделения и соедине­ния потока жидкости; , , — расходы жидкости в общем магистраль­ном потоке и ветвях; 3 — задвижка; ОК – обратный клапан
Потери напора в ветвях оди­наковы, так как они представ­ляют собой разность напоров в точках М и N, общих для обеих ветвей:  
Рис. 6.12. Пример схемы сложного тупикового трубопровода: АВ — магистраль; ВС , CD — ветви; — расход жидкости в магистрали; , — расходы жидкости в ветвях; — высота конечных точек ветвей; 3 — задвижка  

Это равенство справедливо, даже если ветви имеют неодина­ковую длину и диаметр, а также разные местные гидравлические сопротивления. При этом значения расходов и устанавли­ваются автоматически.

В сложном тупиковом трубопроводе (рис. 6.12) магистральный поток (участок АВ) разделяется на два потока (ветви ВС и BD). Очевидно, что сумма расходов в ветвях трубопровода равна рас­ходу в магистрали;

При решении практических задач обычно известны расходы в ветвях, напоры в конечных точках ( и HD) и пространствен­ное размещение трубопровода, включая высоты конечных точек ( и ).

Кроме того, известны геометрические параметры (дли­на и диаметр) труб, коэффициенты местных сопротивлений и свойства жидкости (плотность и вязкость). Общая задача, как пра­вило, сводится к определению потребного напора в точке А.

Его значение, а также расход нужно знать для подбора на­соса.

При определении потребного напора весь сложный тру­бопровод разбивают на простые участки (АВ, ВС и BD) и нахо­дят необходимые параметры в отдельных точках схемы, начиная рассмотрение с конечных точек (С и D) и двигаясь навстречу потоку.

На приведенной схеме (см. рис. 6.12) напор в точке В одинаков для простых участков ВС и BD. При разных расходах и иных пара­метрах ветвей расчетные значения потребного напора (см. формулу (6.7)) для ветвей неодинаковы. Для проведения дальней­ших расчетов выбирают наибольшее из полученных значений .

При определении потребного напора в начале магистрали из схемы условно отбрасывают ветви ВС и BD. Далее расчет прово­дят, как для простого трубопровода АВ при известном напоре в конце его, равном .

Для достижения требуемых расходов и 1 ветвях или получения необходимого соотношения этих расходов используют задвижки 3, встроенные в ветви.

Устройства для измерения расхода. На производственных ус­тановках расход жидкости измеряют с помощью сужающих уст­ройств — дроссельных расходомеров. Наиболее простое по конст­рукции и широко распространенное устройство — диафрагма. Схема измерения расхода с помощью диафрагмы приведена на рис. 6.13.

Читайте также:  Труба стальная с наружным защитным покрытием из полиэтилена

Диафрагма представляет собой диск с отверстием определен­ной формы. Ее зажимают между усреднительными камерами, ко­торые необходимы для повышения точности измерения. К этим камерам подсоединяют дифференциальный манометр для изме­рения разности давлений до и после диафрагмы.

В сечении 1-1, до сужения потока, его скорость равна а давление в этом сечении — . При сужении потока в сечении 2-2 его скорость возрастает до величины .

Другими словами, увеличивается скоростной напор, или удельная кинетическая энергия. Согласно уравнению Бернулли давление в сечении 2-2 становится меньше, чем в сечении 1-1.

Появляется разность дав­лений и соответствующая ей разность уровней жид­кости , измеряемая манометром.

Зависимость разности давлений от расхода жидкости представ­ляют графически в форме градуировочной кривой, прилагаемой к каждой конкретной диафрагме. С помощью такой кривой по показаниям прибора можно определить расход жидкости.

Рис. 6.13. Схема измерения расхода с помощью диафрагмы: 1-1, 2-2 — сечения потока; , и , — соответственно давления в жидко­сти и скорости потоков в указанных сечениях; — разность уровней жидкости в дифференциальном манометре

Гидравлический удар. Явление гидравлического удара возника­ет в трубопроводах при резкой остановке потока жидкости. До сих пор мы пренебрегали ее сжимаемостью, считая, что при измене­нии давления объем жидкости не меняется. Но при гидравличе­ском ударе пренебрегать этим свойством жидкости нельзя.

Как возникает гидравлический удар? Рассмотрим простейшую трубопроводную схему (рис. 6.14). В горизонтальной трубе 2 жид­кость движется под действием постоянного геометрического на­пора го, создаваемого в водонапорной башне 1. При этом давле­ние на входе в трубу также постоянно и равно .На трубо­проводе установлен кран К, с помощью которого можно пере­крыть поток.

При резком закрывании крана внезапно остановится та часть жидкости, которая находится в слое толщиной , прилегающем к крану. Остальная часть жидкости по инерции продолжает дви­жение, сжимая остановившийся слой. При сжатии в слое возрас­тает давление.

Останавливается следующий слой и т.д. Происхо­дит сжатие слоев и повышение давления в направлении от крана ко входу в трубу — распространяется «положительная» волна дав­ления.

Ее скорость соответствует скорости звука — скорости рас­пространения упругих колебаний в данной жидкости.

Наконец, вся жидкость в трубе остановилась. Давление в ней повысилось и стало больше начального значения на входе в трубу. Возникла разность давлений, под действием которой жидкость потекла обратно, начиная со слоя, примыкающего ко входу в трубу.

; При оттоке жидкости в трубе понижается давление. Образуется «отрицательная» волна давления, распространяющаяся со скоро­стью звука. Смена давлений в трубе происходит как колебательный процесс с постепенным затуханием до полной остановки жидкости.

Давление, возникающее в трубе при полной остановке пото­ка, определяют по формуле Жуковского

Рис. 6.14. Схема возникновения гидравлического удара в трубе: 1 — водонапорная башня; 2 — труба; К — кран; — геометрический напор; в — скорость потока; — толщина остановившегося слоя жидкости  

где v — начальная скорость потока; с — скорость звука в данной жидкости.

В качестве примера определим давление, возникающее в тру­бе в результате гидравлического удара, если жидкость (вода) имеет плотность р = 1000 кг/м3 и начальную скорость движения v = 2 м/с.

Скорость звука в воде примем равной с = 1500 м/с. Тогда давле­ние составит = 1000 • 2 • 1500 = 3 000 000 Па (3 МПа).

Если предположить, что труба рассчитана на работу при давлении 0,6 МПа, то, естественно, при гидравлическом ударе она будет разрушена.

Как можно предотвратить возникновение гидравлического уда­ра? Одним из способов его предупреждения является установка вместо крана, резко перекрывающего поток, вентиля или задвижки.

Конструктивно они выполнены так, что останавливают поток плав­но, уменьшая скорость жидкости постепенно.

В этом случае может возникнуть лишь так называемый непрямой гидравлический удар с незначительным повышением давления.

Если по требованиям технологии производства или техники безопасности резкая остановка потока жидкости необходима, то на трубопроводе можно установить специальное устройство — гидроаккумулятор (воздушный колпак). При внезапном повыше­нии давления газ в полости гидроаккумулятора сжимается, и жид­кость поступает в эту полость, что предотвращает ее сжатие в трубе.

Движение жидкостей в трубопроводах

Классификация трубопроводов

Роль трубопроводных систем в хозяйстве любой страны, отдельной корпорации или просто отдельного хозяйства трудно переоценить. Системы трубопроводов в настоящее время являются самым эффективным, надёжным и экологически чистым транспортом для жидких и газообразных продуктов.

Со временем их роль в развитии научно-технического прогресса возрастает. Только с помощью трубопроводов достигается возможность объе­динения стран производителей углеводородного сырья со странами потребителями.

Большая доля в перекачке жидкостей и газов по праву принадлежит системам газопрово­дов и нефтепроводов, но значительную роль играют такие системы как водоснабжение и канализация, теплоснабжение и вентиляция, добыча некоторых твёрдых ископаемых и их гидротранспорт.

Практически в каждой машине и механизме значительная роль принад­лежит трубопроводам.

  • По своему назначению трубопроводы принято различать по виду транспортируемой по ним продукции:
  • газопроводы,
  • – нефтепроводы,
  • – водопроводы, воздухопроводы,
  • – продуктопроводы.
  • По виду движения по ним жидкостей трубопроводы можно разделить на две катего­рии:
  • напорные трубопроводы,
  • безнапорные (самотёчные) трубопроводы.

Также трубопроводы можно подразделить по виду сечения: на трубопроводы круг­лого и не круглого сечения (прямоугольные, квадратные и другого профиля). Трубопро­воды можно разделить и по материалу, из которого они изготовлены: стальные трубопро­воды, бетонные, пластиковые и др.

Дать полную и исчерпывающую классификацию трубопроводов вряд ли удастся из-за многообразия их функций и областей использования. Нас будут интересовать лишь те классификации, которые влияют на принятые методы и способы описания движения по ним жидкостей и газов.

  1. Простой трубопровод
  2. Основным элементом любой трубопроводной системы, какой бы сложной она ни была, является простой трубопровод. Классическим определением его будет- простым
  3. трубопроводом является трубопровод, собранный из труб одинакового диаметра и качест­ва его внутренних стенок, в котором движется транзитный поток жидкости, и на котором нет местных гидравлических сопротивлений.

При напорном движении жидкости простой трубопровод работает полным

сечением Движение жидкости в начале трубы = const. Размер

Движение жидкости в начале трубы сечения трубопровода (диаметр или ве­личина гидравлического радиуса), а так­же его протяжённость (длина) трубопровода (/, L) являются основными геометрическими характеристиками трубопровода. Основными технологическими характеристиками тру­бопровода являются расход жидкости в трубопроводе Q и напор (на головных сооруже­ниях трубопровода, т.е. в его начале). Большинство других характеристик простого тру­бопровода являются, не смотря на их важность, производными характеристиками. По­скольку в простом трубопроводе расход жидкости транзитный (одинаковый в начале и конце трубопровода), то средняя скорость движения жидкости в трубопроводе постоянна . Для установившегося движения жидкости по трубопроводу средняя скорость движения жидкости определяется по формуле Шези:

– гидравлический радиус сечения, для круглого сечения при полном заполнении жидкостью

  • Расход жидкости в трубопроводе:
  • Обозначив: , получим основное уравнение простого трубопровода:
  • где: К – модуль расхода – расход жидкости в русле заданного сечения при гид­равлическом уклоне равном единице (иначе модуль расхода называют расходной характе­ристикой трубопровода). Другой и более известный вид основного уравнения простого трубопровода получим, решив уравнение относительно напора:

Величину называют удельным сопротивле­нием трубопровода, – – его полным сопротив­лением

График уравнения простого трубопровода носит название его гидравлической харак­ теристики. Вид гидравлической характеристики зави­сит от режима движения жидкости в трубопроводе: при ламинарном движении жидкости гидравлическая характеристика трубопровода – прямая линия, проходящая через начало координат (1). При турбулентном режиме гидравлическая характеристика – парабола (2).

Если на трубопроводе собранном из труб одинакового диаметра имеются местные сопротивления, то такой трубопровод можно привести к простому трубопроводу эквива­лентной длины

8.3. Сложные трубопроводы

  1. К сложным трубопроводам следует относить те трубопроводы, которые не подходят к категории простых трубопроводов, т.е к сложным трубопроводам следует отнести:
  2. трубопроводы, собранные из труб разного диаметра (последовательное соедине­ние трубопроводов),
  3. трубопроводы, имеющие разветвления: параллельное соединение трубопроводов, сети трубопроводов, трубопроводы с непрерывной раздачей жидкости.
  4. Последовательное соединение трубопроводов. При последовательном соединении

трубопроводов конец предыдущего просто­го трубопровода одновременно является началом следующего простого трубопрово­да.

Читайте также:  Станки для изготовления дубликатов для обычных ключей и домофонов

В сложном трубопроводе, состоящем из последовательно соединённых простых трубопроводов, последние в литературе на­зываются участками этого трубопровода.

Расход жидкости во всех участках сложного трубопровода остаётся одинаковым Q = const. Общие потери напора во всём трубопрово­де будут равны сумме потерь напора во всех отдельных его участках.

  • где – потери напора на – том участке трубопро-
  • вода.
  • Таким образом, потери напора в трубопроводе, состоящем из последовательно со­единённых друг с другом участков равны квадрату расхода жидкости в трубопроводе ум­ноженному на сумму удельных сопротивлений всех участков.

Гидравлическая характеристика трубопровода состоящего из последовательно со­единённых участков представляет собой графическую сумму (по оси напоров) гидравли­ческих характеристик всех отдельных участков.

На рисунке кривая 1 представляет гид­равлическую характеристику 1-го участка трубопровода, кривая 2 – гидравлическую ха­рактеристику 2-го участка, кривая 3 – сумму гидравлических характеристик обеих участ­ков.

  1. Сложный трубопровод, состоящий из последовательно соединённых простых трубо­проводов можно свести к простому трубопроводу с одинаковым (эквивалентным) диамет­ром, при этом длины участков будут пересчитываться, чтобы сохранить реальные гидрав­лические сопротивления участков трубопровода.
  2. Так приведённая длина – того участка будет:
  3. Следует отметить, что величина скоростного напора также зависит от диаметра трубопровода, и при определении приведённой длины участка мы вносим некоторую

ошибку, которая будет тем большей, чем больше разница в величинах фактического и эк­вивалентного диаметров. В таких случаях можно рекомендовать другой, более сложный способ.

Параллельное соединение трубопроводов. Схема прокладки параллельных трубо­проводов используется в тех случаях, когда на трассе магистрального трубопровода есть

участки, где требуется уменьшить гидрав­лические сопротивления трубопровода (вы­сокие перевальные точки трубопровода) или при заложении трубопровода в трудно­ доступных местах (переход через реки и др.). При параллельном соединении трубо­проводов имеются две особые точки, называемые точками разветвления.

В этих точках находятся концы параллельных ветвей трубопровода (точки А и В). Будем считать, что жидкость движется слева направо, тогда общий для всех ветвей напор в точке А будет больше напора в другой общей для всех ветвей трубопровода точке В (НА Н к ).

В точке А поток жидкости растекается по параллельным ветвям, а в точке В вновь собирается в еди­ный трубопровод. Каждая ветвь может иметь различные геометрические размеры: диа­метр и протяжённость (длину).

Поскольку вся система трубопроводов является закрытой, то поток жидкости в данной системе будет транзитным, т.е.

  • Жидкость движется по всем ветвям при одинаковой разности напоров:
  • > тогда расход жидкости по каждой ветви можно записать в виде:
  • Поскольку ветвей в системе п,, а число неизвестных в системе уравнений будет п+1, включая напор, затрачиваемый на прохождение жидкости по всем ветвям , то в каче­стве дополнительного уравнения в системе будет использовано уравнение неразрывности:
  • При решении системы уравнений можно воспользоваться соотношением:

Для построения гидравлической характери­стики системы параллельных трубопроводов можно воспользоваться методом графического суммирования. Суммирование осуществляется по оси расходов Q. т.к.

Трубопроводы с непрерывным (распределённым расходом). В данном случае пред­полагается, что вдоль всей длины трубопровода располагаются одинаковые равномерно

распределённые потребители жидкости. Классиче­ским примером такого трубопровода может слу­жить оросительная система. В начальной точке трубопровода напор составляет Н. В общем слу­чае, расход по трубопроводу состоит из транзит­ного Qm и расхода Qp ,который непрерывно раз­ даётся по всей длине трубопровода.

  1. Тогда в некотором сечении трубопровода на расстоянии х от его начала расход будет равен:
  2. Тогда гидравлический уклон в сечении х на малом отрезке dx:
  3. Уравнение падения напора вдоль элемента dx запишется следующим образом:
  4. После интегрирования от 0 до / получим:
  5. и при :

Сети трубопроводов. Если магистральные трубопроводы принято рассматривать как сред­ства внешнего транспорта жидкостей и газов, то сети используются в качестве оборудования для внутреннего транспорта жидких или газообраз­ных продуктов.

По направлению движения жидкости (газа) сети различают на сборные и раздаточные (распределительные). В сборных сетях имеется группа источников возникнове­ ния жидкости (газа). Жидкость от этих источни­ков направляется в своеобразные узлы сбора и от­туда – в магистральный трубопровод.

Классиче­ским примером сборной сети может служить неф-тесборная система со скважин, канализационная сеть. В раздаточных (распределительных) сетях жидкость или газ поступает из магистрального трубопровода и по сети распределяется по потре­бителям (абонентам).

Распространённым приме­ ром распределительной сети является система во­доснабжения. К такому же типу сетей можно так­же отнести систему принудительной вентиляции,

где воздух подаётся в служебные помещения или на рабочие места. К такому же типу се­тей можно отнести систему теплоснабжения и др. Сети строятся в населённых пунктах, на предприятиях, отдельных территориях. Трубы в таких системах могут изготавливаться из различных материалов в зависимости от технологических требований, предъявляемых к сетям.

В сборных сетях источники жидкости и газа располагают напором, обеспечиваю­щим движение жидкости (газа) до магистралей. Если напоры недостаточны, то создаются специальные, узлы, где напор обеспечивается принудительным образом.

Имеется, по крайней мере, две группы задач для гидравлического расчёта сетей: проектирование но­вых сетей и расчёт пропускной способности существующих сетей. Принципы расчёта по­хожи. В основе расчётных формул положены уравнения Дарси-Вейсбаха и Шези. Предва­рительно в сети выбирается ветвь с наибольшей нагрузкой (расход и напор).

Эта ветвь рассматривается как своеобразный трубопровод, который, в общем случае можно отнести к категории последовательного соединения простых трубопроводов. Другие участки рас-

считываются самостоятельно. После завершения расчётных работ, осуществляется про­верка соответствия результатов расчётов в узлах сети. После анализа расхождений резуль­татов решений в узлах сети осуществляется корректировка исходных данных. Таким обра­зом, метод итераций является наиболее приемлемым для расчёта сетей.

Трубопроводы некруглого профиля. Подавляющее большинство трубопроводов со­бирается из круглых труб. Преимущество круглого сечения очевидны: круглое сечение обладает максимальной пропускной способностью и минимальным гидравлическим со­противлением. Так гидравлический радиус для круглого сечения:

для треугольного сечения для квадратного сечения

для шестиугольного сечения

Тем не менее, трубы некруглого сечения применяются в промышленности там, где потери напора не играют особой роли. Это, в первую очередь, воздуховоды с малыми ско­ростями движения воздуха, и т.д.

Трубопроводы, работающие под вакуумом (сифоны). Сифоном называется такой са­мотёчный трубопровод, часть которого располагается выше уровня жидкости в резервуа­ре. Действующий напор представляет собой разницу уровней в резервуарах Az.

Для приведения сифона в действие необходимо предварительно откачать из си­фона воздух и создать в нём разряжение. При этом жид­кость поднимется из резервуара А до верхней точки сифона, после чего жидкость начнёт двигаться по нис­падающей части трубопровод в резервуар В. Другой ме­ тод запуска сифона – заполнить его жидкостью извне.

Запишем уравнение Бернулли для двух сечений а-а и b-b относительно плоскости сравне­ния О – О.

  • Поскольку: , то:
  • ?

Критическим сечением в сифоне будет сечение х – х в верхней точке сифона. Давле­ние в этой точке будет минимальным и для нормальной работы сифона необходимо, что­бы оно выло выше упругости паров перекачиваемой по сифону жидкости.

Трубопроводы со стенками из упругого материала.

В практике предприятий нефтя­ной отрасли нередки случаи использования специальных трубопроводов, стенки которых деформируются при изменении давления в перекачиваемой по ним жидкости.

К трубо­проводам такого типа относятся мягкие и гибкие рукава, резиновые и армированные шланги. Опыты Фримана показали, что в данных случаях можно пользоваться формулой аналогичной формуле Дарси-Вейсбаха:

  1. ' > , и
  2. где; можновзять из таблицы:
  3. Характеристика трубопровода Величина rj
  4. Гладкие резиновые рукава 0,000860
  5. Обыкновенные резиновые рукава 0,000899
  6. Очень гладкие, прорезинненые внутри 0,000884
  7. Шероховатые внутри 0,021300
  8. Кожаные 0,013700
  9. Для упругих деформируемых рукавов и шлангов В формулу Дарси-Веёсбаха следует ввести необходимые поправки.
Характеристика трубопровода Величина rj
Гладкие резиновые рукава 0,000860
Обыкновенные резиновые рукава 0,000899
Очень гладкие, прорезинненые внутри 0,000884
Шероховатые внутри 0,021300
Кожаные 0,013700
Для упругих деформируемых рукавов и шлангов В формулу Дарси-Веёсбаха следует ввести необходимые поправки.
Номинальный диа­метр в мм Средний внутренний диаметр в мм
При р- lam Прнр=3ат

§ 92. ДВИЖЕНИЕ ЖИДКОСТИ ПО ТРУБАМ. ЗАКОН БЕРНУЛЛИ

Макеты страниц

В этом параграфе мы применим закон сохранения энергии к движению жидкости или газа по трубам. Движение жидкости по трубам часто встречается в технике и быту. По трубам водопровода подается вода в городе в дома, к местам ее потребления. В машинах по трубам поступает масло для смазки, топливо в двигатели и т. д.

Читайте также:  Хомут для труб 3d модель

Движение жидкости по трубам нередко встречается и в природе. Достаточно сказать, что кровообращение животных и человека — это течение крови по трубкам — кровеносным сосудам. В какой-то мере течение воды в реках тоже является разновидностью течения жидкости по трубам.

Русло реки — это своеобразная труба для текущей воды.

Как известно, неподвижная жидкость в сосуде согласно закону Паскаля передает внешнее давление по всем направлениям и во все точки объема без изменения.

Однако, когда жидкость течет без трения по трубе, площадь поперечного сечения которой на разных участках различна, давление оказывается неодинаковым вдоль трубы.

Выясним, почему давление в движущейся жидкости зависит от площади поперечного сечения трубы. Но сначала ознакомимся с одной важной особенностью всякого потока жидкости.

Предположим, что жидкость течет по горизонтально расположенной трубе, сечение которой в разных местах различное, например по трубе, часть которой показана на рисунке 207.

Движение жидкости в начале трубы

Рис. 207

Если бы мы мысленно провели несколько сечений вдоль трубы, площади которых соответственно равны и измерили бы количество жидкости, протекающей через каждое из них за какой-то промежуток времени то мы обнаружили бы, что через каждое сечение протекло одно и то же количество жидкости. Это значит, что вся та жидкость, которая за время проходит через первое сечение, за такое же время проходит и через третье сечение, хотя оно по площади значительно меньше, чем первое. Если бы это было не так и через сечение площадью за время проходило, например, меньше жидкости, чем через сечение площадью то избыток жидкости должен был бы где-то накапливаться. Но жидкость заполняет всю трубу, и накапливаться ей негде.

Как же может жидкость, протекшая через широкое сечение, успеть за такое же время «протиснуться» через узкое? Очевидно, что для этого при прохождении узких частей трубы скорость движения должна быть больше, и как раз во столько раз, во сколько раз площадь сечения меньше.

Действительно, рассмотрим некоторое сечение движущегося столба жидкости, совпадающее в начальный момент времени с одним из сечений трубы (рис. 208). За время эта площадка переместится на расстояние которое равно где — скорость течения жидкости. Объем V жидкости, протекшей через сечение трубы, равен произведению площади этого сечения на длину

  • В единицу же времени протекает объем жидкости —
  • Объем жидкости, протекающей в единицу времени через сечение трубы, равен произведению площади поперечного сечения трубы на скорость течения.

Как мы только что видели, этот объем должен быть одним и тем же в разных сечениях трубы. Поэтому, чем меньше сечение трубы, тем больше скорость движения.

  1. Сколько жидкости проходит через одно сечение трубы за некоторое время, столько же ее должно пройти за такое
  2. Рис. 208

же время через любое другое сечение.

При этом мы считаем, что данная масса жидкости всегда имеет один и тот же объем, что она не может сжаться и уменьшить свой объем (о жидкости говорят, что она несжимаема). Хорошо известно, например, что в узких местах реки скорость течения воды больше, чем в широких. Если обозначить скорость течения жидкости в сечениях площадями через то можно написать:

Отсюда видно, что при переходе жидкости с участка трубы с большей площадью сечения на участок с меньшей площадью сечения скорость течения увеличивается, т. е. жидкость движется с ускорением. А это по второму закону Ньютона означает, что на жидкость действует сила. Что это за сила?

Этой силой может быть только разность между силами давления в широком и узком участках трубы. Таким образом, в широком участке давление жидкости должно быть больше, чем в узком участке трубы.

Это же следует из закона сохранения энергии. Действительно, если в узких местах трубы увеличивается скорость движения жидкости, то увеличивается и ее кинетическая энергия. А так как мы приняли, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной.

О какой же потенциальной энергии здесь идет речь? Если труба горизонтальна, то потенциальная энергия взаимодействия с Землей во всех частях трубы одна и та же и не может измениться. Значит, остается только потенциальная энергия упругого взаимодействия. Сила давления, которая заставляет жидкость течь по трубе, — это и есть упругая сила сжатия жидкости.

Когда мы говорим, что жидкость несжимаема, то имеем лишь в виду, что она не может быть сжата настолько, чтобы заметно изменился ее объем, но очень малое сжатие, вызывающее появление упругих сил, неизбежно происходит. Эти силы и создают давление жидкости. Вот это сжатие жидкости и уменьшается в узких частях трубы, компенсируя рост скорости.

В узких местах труб давление жидкости должно быть поэтому меньше, чем в широких.

В этом состоит закон, открытый петербургским академиком Даниилом Бернулли:

Давление текущей жидкости больше в тех сечениях потока, в которых скорость ее движения меньше, и,

  • Рис. 209
  • наоборот, в тех сечениях, в которых скорость больше, давление меньше.

Как это ни покажется странным, но когда жидкость «протискивается» через узкие участки трубы, то ее сжатие не увеличивается, а уменьшается. И опыт хорошо это подтверждает.

Если трубу, по которой течет жидкость, снабдить впаянными в нее открытыми трубками — манометрами (рис. 209), то можно будет наблюдать распределение давления вдоль трубы. В узких местах трубы высота столба жидкости в манометрической трубке меньше, чем в широких. Это означает, что в этих местах давление меньше.

Чем меньше сечение трубы, тем больше в ней скорость течения и меньше давление. Можно, очевидно, подобрать такое сечение, в котором давление равно внешнему атмосферному давлению (высота уровня жидкости в манометре будет тогда равна нулю).

А если взять еще меньшее сечение, то давление жидкости в нем будет меньше атмосферного.

Такой поток жидкости можно использовать для откачки воздуха. На этом принципе действует так называемый водоструйный насос. На рисунке 210 изображена схема такого насоса. Струю воды пропускают через трубку А с узким отверстием на конце. Давление воды у отверстия трубы меньше атмосферного. Поэтому

  1. Рис. 210
  2. Рис. 211

газ из откачиваемого объема через трубку В втягивается к концу трубки А и удаляется вместе с водой.

Все сказанное о движении жидкости по трубам относится и к движению газа.

Если скорость течения газа не слишком велика и газ не сжимается настолько, чтобы изменялся его объем, и если, кроме того, пренебречь трением, то закон Бернулли верен и для газовых потоков.

В узких частях труб, где газ движется быстрее, давление его меньше, чем в широких частях, и может стать меньше атмосферного. В некоторых случаях для этого даже не требуется трубы.

Можно проделать простой опыт. Если дуть на лист бумаги вдоль его поверхности, как показано на рисунке 211, можно увидеть, что бумага станет подниматься вверх. Это происходит из-за понижения давления в струе воздуха над бумагой.

Такое же явление имеет место при полете самолета. Встречный поток воздуха набегает на выпуклую верхнюю поверхность крыла летящего самолета, и за счет этого происходит понижение давления. Давление над крылом оказывается меньше, чем давление под крылом. Именно поэтому возникает подъемная сила крыла.

Упражнение 62

1. Допустимая скорость течения нефти по трубам равна 2 м/сек. Какой объем нефти проходит через трубу диаметром 1 м в течение 1 ч?

2. Измерьте количество воды, вытекающей из водопроводного крана за определенное время Определите скорость течения воды, измерив диаметр трубы перед краном.

3. Каким должен быть диаметр трубопровода, по которому должно протекать воды в час? Допустимая скорость течения воды 2,5 м/сек.

Ссылка на основную публикацию
Adblock
detector