Металлическая медь: описание элемента, свойства и применение

Физические и химические свойства меди

Металлическая медь: описание элемента, свойства и применение

Свойства меди, которая в природе встречается и в виде достаточно крупных самородков, люди изучили еще в древние времена, когда из этого металла и его сплавов делали посуду, оружие, украшения, различные изделия бытового назначения.

Активное использование данного металла на протяжении многих лет обусловлено не только его особыми свойствами, но и простотой обработки.

Медь, которая присутствует в руде в виде карбонатов и окислов, достаточно легко восстанавливается, что и научились делать наши древние предки.

Медный слиток

Интересное о меди

Изначально процесс восстановления этого металла выглядел очень примитивно: медную руду просто нагревали на кострах, а затем подвергали резкому охлаждению, что приводило к растрескиванию кусков руды, из которых уже можно было извлекать медь.

Дальнейшее развитие такой технологии привело к тому, что в костры начали вдувать воздух: это повышало температуру нагревания руды. Затем нагрев руды стали выполнять в специальных конструкциях, которые и стали первыми прототипами шахтных печей.

О том, что медь используется человечеством с древних времен, свидетельствуют археологические находки, в результате которых были найдены изделия из данного металла. Историками установлено, что первые изделия из меди появились уже в 10 тысячелетии до н.

э, а наиболее активно она стала добываться, перерабатываться и использоваться спустя 8–10 тысяч лет.

Естественно, предпосылками к такому активному использованию данного металла стали не только относительная простота его получения из руды, но и его уникальные свойства: удельный вес, плотность, магнитные свойства, электрическая, а также удельная проводимость и др.

В наше время уже сложно найти медь в природе в виде самородков, обычно ее добывают из руды, которая подразделяется на следующие виды.

  • Борнит — в такой руде медь может содержаться в количестве до 65%.
  • Халькозин, который также называют медным блеском. В такой руде меди может содержаться до 80%.
  • Медный колчедан, также называемый халькопиритом (содержание до 30%).
  • Ковеллин (содержание до 64%).

Халькопирит

Физические свойства

Медь в чистом виде представляет собой металл, цвет которого может варьироваться от розового до красного оттенка.

Радиус ионов меди, имеющих положительный заряд, может принимать следующие значения:

  • если координационный показатель соответствует 6-ти — до 0,091 нм;
  • если данный показатель соответствует 2 — до 0,06 нм.

Радиус атома меди составляет 0,128 нм, также он характеризуется сродством к электрону, равном 1,8 эВ. При ионизации атома данная величина может принимать значение от 7,726 до 82,7 эВ.

Медь — это переходный металл, показатель электроотрицательности которого составляет 1,9 единиц по шкале Полинга. Кроме этого, его степень окисления может принимать различные значения. При температурах, находящихся в интервале 20–100 градусов, его теплопроводность составляет 394 Вт/м*К. Электропроводность меди, которую превосходит лишь серебро, находится в интервале 55,5–58 МСм/м.

Так как медь в потенциальном ряду стоит правее водорода, она не может вытеснять этот элемент из воды и различных кислот. Ее кристаллическая решетка имеет кубический гранецентрированный тип, величина ее составляет 0,36150 нм. Плавится медь при температуре 1083 градусов, а температура ее кипения — 26570. Физические свойства меди определяет и ее плотность, которая составляет 8,92 г/см3.

Самородная медь

Из ее механических свойств и физических показателей стоит также отметить следующие:

  • термическое линейное расширение — 0,00000017 единиц;
  • предел прочности, которому медные изделия соответствуют при растяжении, составляет 22 кгс/мм2;
  • твердость меди по шкале Бринелля соответствует значению 35 кгс/мм2;
  • удельный вес 8,94 г/см3;
  • модуль упругости составляет 132000 Мн/м2;
  • значение относительного удлинения равно 60%.

Совершенно уникальными можно считать магнитные свойства данного металла, который является полностью диамагнитным.

Именно эти свойства, наряду с физическими параметрами: удельным весом, удельной проводимостью и другими, в полной мере объясняют широкую востребованность данного металла при производстве изделий электротехнического назначения.

Похожими свойствами обладает алюминий, который также успешно используется при производстве различной электротехнической продукции: проводов, кабелей и др.

Основную часть характеристик, которыми обладает медь, практически невозможно изменить, за исключением предела прочности. Данное свойство можно улучшить практически в два раза (до 420–450 МН/м2), если осуществить такую технологическую операцию, как наклеп.

Химические свойства

Химические свойства меди определяются тем, какое положение она занимает в таблице Менделеева, где она имеет порядковый номер 29 и располагается в четвертом периоде. Что примечательно, она находится в одной группе с благородными металлами. Это лишний раз подтверждает уникальность ее химических свойств, о которых следует рассказать более подробно.

Оттенки медных сплавов

В условиях невысокой влажности медь практически не проявляет химическую активность. Все меняется, если изделие поместить в условия, характеризующиеся высокой влажностью и повышенным содержанием углекислого газа.

В таких условиях начинается активное окисление меди: на ее поверхности формируется зеленоватая пленка, состоящая из CuCO3, Cu(OH)2 и различных сернистых соединений.

Такая пленка, которая называется патиной, выполняет важную функцию защиты металла от дальнейшего разрушения.

Окисление начинает активно происходить и тогда, когда изделие подвергается нагреву. Если металл нагреть до температуры 375 градусов, то на его поверхности формируется оксид меди, если выше (375-1100 градусов) — то двухслойная окалина.

Медь достаточно легко реагирует с элементами, которые входят в группу галогенов. Если металл поместить в пары серы, то он воспламенится. Высокую степень родства он проявляет и к селену. Медь не вступает в реакцию с азотом, углеродом и водородом даже в условиях высоких температур.

Внимание заслуживает взаимодействие оксида меди с различными веществами. Так, при его взаимодействии с серной кислотой образуется сульфат и чистая медь, с бромоводородной и иодоводородной кислотой — бромид и иодид меди.

Иначе выглядят реакции оксида меди с щелочами, в результате которых образуется купрат. Получение меди, при котором металл восстанавливается до свободного состояния, осуществляют при помощи оксида углерода, аммиака, метана и других материалов.

Медь при взаимодействии с раствором солей железа переходит в раствор, при этом железо восстанавливается. Такая реакция используется для того, чтобы снять напыленный медный слой с различных изделий.

Одно- и двухвалентная медь способна создавать комплексные соединения, отличающиеся высокой устойчивостью. Такими соединениями являются двойные соли меди и аммиачные смеси. И те и другие нашли широкое применение в различных отраслях промышленности.

Бухты медной проволоки

Области применения меди

Применение меди, как и наиболее схожего с ней по своим свойствам алюминия, хорошо известно — это производство кабельной продукции. Медные провода и кабели, характеризуются невысоким электрическим сопротивлением и особыми магнитными свойствами.

Для производства кабельной продукции применяются виды меди, характеризующиеся высокой чистотой.

Если в ее состав добавить даже незначительное количество посторонних металлических примесей, к примеру, всего 0,02% алюминия, то электрическая проводимость исходного металла уменьшится на 8–10%.

Невысокий вес меди и ее высокая прочность, а также способность поддаваться различным видам механической обработки — это те свойства, которые позволяют производить из нее трубы, успешно использующиеся для транспортировки газа, горячей и холодной воды, пара. Совершенно не случайно именно подобные трубы применяются в составе инженерных коммуникаций жилых и административных зданий в большинстве европейских стран.

Медь, кроме исключительно высокой электропроводности, отличается способностью хорошо проводить тепло. Благодаря этому свойству она успешно используется в составе следующих систем:

  • тепловые трубки;
  • кулеры, использующиеся для охлаждения элементов персональных компьютеров;
  • системы отопления и охлаждения воздуха;
  • системы, обеспечивающие перераспределение тепла в различных устройствах (теплообменники).

Металлические конструкции, в которых использованы медные элементы, отличаются не только небольшим весом, но и исключительной декоративностью. Именно это послужило причиной их активного использования в архитектуре, а также для создания различных интерьерных элементов.

Шина электротехническая медная

Источник: http://met-all.org/cvetmet-splavy/med/fizicheskie-i-himicheskie-svojstva-medi.html

Медь как металл и сырье в строительстве: ее особенности и нюансы обработки

В большей части промышленных отраслей используется такой металл, как медь. Благодаря высокой электропроводности без этого материала не обходится ни одна область электротехники.

Из нее образуются проводники, обладающими отличными эксплуатационными особенностями. Помимо этих особенностей медь обладает пластичностью и тугоплавкостью, устойчивостью к коррозии и агрессивным средам.

И сегодня мы рассмотрим металл со всех сторон: укажем цену за 1 кг лома меди, поведаем о ее использовании и производстве.

Медь представляет собой химический элемент, носящийся к первой группы периодической системы имени Менделеева. Этот пластичный металл имеет золотисто – розовый цвет и является одним из трех металлов с ярко выраженным окрашиванием. С давних времен активно используется человеком во многих областях промышленности.

Главной особенностью металла является его высокая электро- и теплопроводность. Если сравнивать с другими металлами, то проведение электрического тока через медь выше в 1,7 раз, чем у алюминия, и почти в 6 раз выше, чем у железа.

Медь имеет ряд отличительных особенностей перед остальными металлами:

  1. Пластичность. Медь представляет собой мягкий и пластичный металл. Если брать во внимание медную проволоку, она легко гнется, принимает любые положения и при этом не деформируется. Сам же металл достаточно немного надавить, чтобы проверить эту особенность.
  2. Устойчивость к коррозии. Этот фоточувствительный материал отличается высокой устойчивостью к возникновению коррозии. Если медь на длительный срок оставить во влажной среде, на ее поверхности начнет появляться зеленая пленка, которая и защищает металл от негативного влияния влаги.
  3. Реакция на повышение температуры. Отличить медь от других металлов можно путем ее нагревания. В процессе медь начнет терять свой цвет, а затем становиться темнее. В результате при нагреве металла он достигнет черного цвета.

Благодаря таким особенностям можно отличить данный материал от латуни, олова, бронзы и других металлов.

Видео ниже расскажет вам про полезные свойства меди:

Преимуществами данного металла являются:

  • Высокий показатель теплопроводности;
  • Устойчивость к влиянию коррозии;
  • Достаточно высокая прочность;
  • Высокая пластичность, которая сохраняется до температуры -269 градусов;
  • Хорошая электропроводность;
  • Возможность легирования с различными добавочными компонентами.

Про характеристики, физические и химические свойства вещества-металла меди и ее сплавов читайте ниже.

Свойства и характеристики

Медь, как малоактивный металл, не вступает во взаимодействие с водой, солями, щелочами, а также со слабой серной кислотой, но при этом подвержена растворению в концентрированной серной и азотной кислоте.

Физические свойства метала:

  • Температура плавления меди составляет 1084°C;
  • Температура кипения меди составляет 2560°C;
  • Плотность 8890 кг/м³;
  • Электрическая проводимость 58 МОм/м;
  • Теплопроводность 390 м*К.

Механические свойства:

  • Предел прочности на разрыв при деформированном состоянии составляет 350-450 МПа, при отожженном – 220-250 МПа;
  • Относительное сужение в деформированном состоянии 40-60%, в отожженном – 70-80%;
  • Относительное удлинение в деформированном состоянии составляет 5-6 δ ψ%, в отожженном – 45-50 δ ψ%;
  • Твердость составляет в деформированном состоянии 90-110 НВ, в отожженном – 35-55 НВ.

При температуре ниже 0°С этот материал обладает более высокой прочностью и пластичностью, чем при +20°С.

Структура и состав

Медь, имеющая высокий коэффициент электропроводности, отличается наименьшим содержанием примесей. Доля их в составе может приравниваться 0,1%. С целью увеличения прочности меди в нее добавляют различные примеси: сурьма, цинк, олово, никель и прочее. В зависимости от ее состава и степени содержания чистой меди различают несколько ее марок.

Структурный тип меди может включать в себя также кристаллы серебра, никеля, кальция, алюминий, золота и других компонентов. Все они отличаются сравнительной мягкостью и пластичностью. Частичка самой меди имеет кубическую форму, атому которой расположены на вершинах F –ячейки. Каждая ячейка состоит из 4 атомов.

О том, где брать медь, смотрите в этом видеоролике:

В природных условиях данный металл содержится в самородной меди и сульфидных рудах. Широкое распространение при производстве меди получили руды под названием «медный блеск» и «медный колчедан», которые содержат до 2% необходимого компонента.

Большую часть (до 90%) первичного металла меди получают благодаря пирометаллургическому способу, который включает в себя массу этапов: процесс обогащения, обжиг, плавка, обработка в конвертере и рафинирование. Оставшаяся часть получается гидрометаллургическим способом, который заключается в ее выщелачивании разведенной серной кислоты.

Медь активно используется в следующих областях:

  • Электротехническая промышленность, которая заключается, в первую очередь, в производстве электропроводов. Для этих целей медь должна быть максимально чистой, без посторонних примесей.
  • Изготовление филигранных изделий. Медная проволока в отожженном состоянии отличается высокой пластичностью и прочностью. Именно поэтому, она активно используется при производстве различных шнуров, орнаментов и прочих конструкций.
  • Переплавка катодной меди в проволоку. Самые разнообразные медные изделия переплавляются в слитки, которые идеально подходят для дальнейшей прокатки.
Читайте также:  Общая характеристика настольно-сверлильного станка 2м112

Медь активно используется в самых различных сферах промышленности. Она может входить в состав не только проволоки, но и оружия и даже бижутерии. Ее свойства и широкая сфера применения благоприятно повлияли на ее популярность.

Видео ниже расскажет о том, как медь может изменить свои свойства:

Источник: http://stroyres.net/metallicheskie/vidyi/tsvetnyie/med/kak-syire-v-stroitelstve.html

Свойства меди – химические, физические и уникальные целебные

Особые природные свойства меди и простота ее обработки обусловили то, что данным металлом человек научился пользоваться еще в глубокой древности.

Древние греки называли этот элемент халкосом, на латинском она именуется cuprum (Сu) или aes, а средневековые алхимики именовали этот химический элемент не иначе как Марс или Венера. Человечество давно познакомилось с медью за счет того, что в природных условиях ее можно было встретить в виде самородков, имеющих зачастую весьма внушительные размеры.

Легкая восстанавливаемость карбонатов и окислов данного элемента поспособствовала тому, что именно его, по мнению многих исследователей, наши древние предки научились восстанавливать из руды раньше всех остальных металлов.

Сначала медные породы просто-напросто нагревали на открытом огне, а затем резко охлаждали. Это приводило к их растрескиванию, что давало возможность выполнять восстановление металла.

Освоив столь нехитрую технологию, человек начал постепенно развивать ее. Люди научились вдувать при помощи мехов и труб в костры воздух, затем додумались устанавливать вокруг огня стены. В конце концов, была сконструирована и первая шахтная печь.

В наши дни медные самородки встречаются крайне редко. Медь добывают из различных медных руд, среди которых можно выделить следующие:

  • борнит (в нем купрума бывает до 65 %);
  • медный блеск (он же халькозин) с содержанием меди до 80 %;
  • медный колчедан (иначе говоря – халькоперит), содержащий порядка 30 % интересующего нас химического элемента;
  • ковеллин (в нем Cu бывает до 64 %).

Также купрум добывают из малахита, куприта, иных оксидных руд и еще без малого из 20 минералов, содержащих ее в различных количествах.

В простом виде описываемый элемент представляет собой металл розовато-красного оттенка, характеризуемый высокими пластичными возможностями. Природный купрум включает в себя два нуклида со стабильной структурой.

Радиус положительно заряженного иона меди имеет следующие значения:

  • при координационном показателе 6 – до 0,091 нм;
  • при показателе 2 – до 0,060 нм.

А нейтральный атом элемента характеризуется радиусом 0,128 нм и сродством к электрону 1,8 эВ. При последовательной ионизации атом имеет величины от 7,726 до 82,7 эВ.

Купрум является переходным металлом, поэтому он имеет переменные степени окисления и малый показатель электроотрицательности (1,9 единиц по шкале Полинга).

Теплопроводность меди (коэффициент) равняется 394 Вт/(м*К) при температурном интервале от 20 до 100 °С. Электропроводность меди (удельный показатель) составляет максимум 58, минимум 55,5 МСм/м.

Более высокой величиной характеризуется лишь серебро, электропроводность других металлов, в том числе и алюминия, ниже.

Медь не может вытеснять водород из кислот и воды, так как в стандартном потенциальном ряду она стоит правее водорода.

Описываемый металл характеризуется гранецентрированной кубической решеткой с величиной 0,36150 нм.

Кипит медь при температуре 2657 градусов, плавится при температуре чуть больше 1083 градусов, а ее плотность равняется 8,92 грамм/кубический сантиметр (для сравнения – плотность алюминия равняется 2,7).

Другие механические свойства меди и важные физические показатели:

  • давление при 1628 °С – 1 мм рт. ст.;
  • термическая величина расширения (линейного) – 0,00000017 ед.;
  • при растяжении достигается предел прочности равный 22 кгс/мм2;
  • твердость меди – 35 кгс/мм2 (шкала Бринелля);
  • удельный вес – 8,94 г/см3;
  • модуль упругости – 132000 Мн/м2;
  • удлинение (относительное) – 60 %.

Магнитные свойства меди в какой-то мере уникальны. Элемент полностью диамагнитен, показатель его магнитной атомной восприимчивости составляет всего лишь 0,00000527 ед. Магнитные характеристики меди (впрочем, как и все ее физические параметры – вес, плотность и пр.

) обуславливают востребованность элемента для изготовления электротехнических изделий.

Примерно такие же характеристики имеются и у алюминия, поэтому они с описываемым металлом составляют «сладкую парочку», используемую для производства проводниковых деталей, проводов, кабелей.

Многие механические показатели меди изменить практически нереально (те же магнитные свойства, например), а вот предел прочности рассматриваемого элемента можно улучшить посредством выполнения наклепа. В данном случае он повысится примерно в два раза (до 420–450 МН/м2).

Купрум в системе Менделеева включен в группу благородных металлов (IB), находится он в четвертом периоде, имеет 29 порядковый номер, имеет склонность к комплексообразованию. Химические характеристики меди не менее важны, чем ее магнитные, механические и физические показатели, будь то ее вес, плотность либо иная величина. Поэтому мы будем говорить о них подробно.

Химическая активность купрума мала. Медь в условиях сухой атмосферы изменяется незначительно (можно даже сказать, что почти не изменяется). А вот при повышении влажности и наличии в окружающей среде углекислого газа на ее поверхности обычно формируется пленка зеленоватого оттенка.

В ней присутствует CuCO3 и Cu(OH)2, а также различные сернистые медные соединения. Последние образовываются из-за того, что в воздухе практически всегда есть некоторое количество сероводорода и сернистого газа. Указанную зеленоватую пленку именуют патиной.

Она защищает от разрушения металл.

Если медь нагреть на воздухе, начнутся процессы окисления ее поверхности. При температурах от 375 до 1100 градусов в результате окисления образуется двухслойная окалина, а при температуре до 375 градусов – оксид меди. При обычной же температуре обычно наблюдается соединение Cu с влажным хлором (итог такой реакции – появление хлорида).

С иными элементами группы галогенов медь также взаимодействует достаточно легко. В парах серы она загорается, высокий уровень сродства она имеет и к селену.

Зато с углеродом, азотом и водородом Сu не соединяется даже при повышенных температурах.

При контакте оксида меди с серной кислотой (разбавленной) получается сульфат и чистая медь, с иодоводородной и бромоидоводородной кислотой – иодид и бромид меди соответственно.

Если же оксид соединить с той или иной щелочью, результатом химической реакции станет появление купрата. А вот самые известные восстановители (оксид углерода, аммиак, метан и другие) способны восстановить купрум до свободного состояния.

Практический интерес представляет способность этого металла вступать в реакцию с солями железа (в виде раствора). В этом случае фиксируется восстановление железа и переход Cu в раствор. Данная реакция применяется для снятия с декоративных изделий напыленного слой меди.

В одно- и двухвалентных формах медь способна создавать комплексные соединения с высоким показателем устойчивости. К таким соединениям относят аммиачные смеси (они представляют интерес для промышленных предприятий) и двойные соли.

Главная сфера применения алюминия и меди известна, пожалуй, всем. Из них делают разнообразные кабели, в том числе и силовые. Способствует этому малое сопротивление алюминия и купрума, их особые магнитные возможности.

В обмотках электрических приводов и в трансформаторах (силовых) широко используются медные провода, которые характеризуются уникальной чистотой меди, являющейся исходным сырьем для их выпуска.

Если в такое чистейшее сырье добавить всего лишь 0,02 процента алюминия, электропроводимость изделия уменьшится процентов 8–10.

Сu, имеющий высокую плотность и прочность, а также малый вес, прекрасно поддается механической обработке.

Это позволяет производить отличные медные трубы, которые демонстрируют свои высокие эксплуатационные характеристики в системах подачи газа, отопления, воды.

Во многих европейских государствах именно медные трубы используются в подавляющем большинстве случаев для обустройства внутренних инженерных сетей жилых и административных строений.

Мы много сказали об электропроводимости алюминия и меди. Не забудем и об отличной теплопроводности последней. Данная характеристика дает возможность использовать медь в следующих конструкциях:

  • в тепловых трубках;
  • в кулерах персональных компьютеров;
  • в отопительных системах и системах охлаждения воздуха;
  • в теплообменниках и многих других устройствах, отводящих тепло.

Плотность и небольшой вес медных материалов и сплавов обусловили и их широкое применение в архитектуре.

Понятно, что плотность меди, ее вес и всевозможные химические и магнитные показатели, по большому счету, мало интересуют обычного человека. А вот целебные свойства меди хотят узнать многие.

Древние индийцы применяли медь для лечения органов зрения и различных недугов кожных покровов. Древние греки излечивали медными пластинками язвы, сильную отечность, синяки и ушибы, а также и более серьезные болезни (воспаления миндалин, врожденную и приобретенную глухоту). А на востоке медный красный порошок, растворенный в воде, применялся для восстановления сломанных костей ног и рук.

Лечебные свойства меди были хорошо известны и россиянам. Наши предки излечивали с помощью этого уникального металла холеру, эпилепсию, полиартриты и радикулиты. В настоящее время для лечения обычно используются медные пластинки, которые накладываются на специальные точки на теле человека. Целебные свойства меди при такой терапии проявляются в следующем:

  • защитный потенциал организма человека возрастает;
  • инфекционные болезни не страшны тем, кто лечится медью;
  • наблюдается снижение болевых ощущений и снятие воспалительных явлений.

Источник: http://tutmet.ru/med-lechebnye-himicheskie-svojstva-plotnost-jelektroprovodnost.html

Классификация металлов. Характеристика металлов и области применения :

Несколько научных дисциплин (материало- и металловедение, физика, химия) занимаются изучением свойств и характеристик металлов. Существует их общепринятая классификация.

Однако каждая из дисциплин при их изучении опирается на особые специализированные параметры, находящиеся в сфере ее интересов.

С другой стороны, все науки, изучающие металлы и сплавы, придерживаются одной точки зрения, что существует две основные группы: черные и цветные.

Признаки металлов

Различают следующие основные механические свойства:

  • Твердость – определяет возможность одного материала противодействовать проникновению другого, более твердого.
  • Усталость – количество, а также время циклических воздействий, которое может выдержать материал без изменения целостности.
  • Прочность. Заключается в следующем: если приложить динамическую, статическую или знакопеременную нагрузку, то это не приведет к изменению формы, строения и размеров, нарушению внутренней и наружной целостности металла.
  • Пластичность – это способность удерживать целостность и полученную форму при деформации.
  • Упругость – это деформация без нарушения целостности под воздействием определенных сил, а также после избавления от нагрузки возможность к возращению первоначальной формы.
  • Стойкость к трещинам – под влиянием внешних сил в материале они не образуются, а также сохраняется наружная целостность.
  • Износостойкость – способность сохранять наружную и внутреннюю целостность при продолжительном трении.
  • Вязкость – сохранение целостности при увеличивающихся физических воздействиях.
  • Жаростойкость – противостояние изменению размера, формы и разрушению при воздействии высоких температур.

Классификация металлов

К металлам относятся материалы, обладающие совокупностью механических, технологических, эксплуатационных, физических и химических характерных свойств:

  • механические подтверждают способность к сопротивлению деформации и разрушению;
  • технологические свидетельствуют о способности к разному виду обработки;
  • эксплуатационные отражают характер изменения при эксплуатации;
  • химические показывают взаимодействие с различными веществами;
  • физические указывают на то, как ведет себя материал в разных полях – тепловом, электромагнитном, гравитационном.
Читайте также:  Бензиновая мотокоса: виды и критерии выбора

По системе классификации металлов все существующие материалы подразделяются на две объемные группы: черные и цветные. Технологические и механические свойства также тесно связаны. К примеру, прочность металла может являться результатом правильной технологической обработки. Для этих целей используют так называемую закалку и «старение».

Химические, физические и механические свойства тесно взаимосвязаны между собой, так как состав материала устанавливает все остальные его параметры. Например, тугоплавкие металлы являются самыми прочными.

Свойства, которые проявляются в состоянии покоя, называются физическими, а под воздействием извне – механическими.

Также существуют таблицы классификации металлов по плотности — основному компоненту, технологии изготовления, температуре плавления и другие.

Черные металлы

Материалы, относящиеся к этой группе, обладают одинаковыми свойствами: внушительной плотностью, большой температурой плавления и темно-серой окраской. К первой большой группе черных металлов принадлежат следующие:

  1. Железные – кобальт, марганец, никель, железо. Применяются в качестве основы или добавок к сплавам.
  2. Тугоплавкие – хром, вольфрам, молибден, титан. Все они имеют температуру плавления, превышающую уровень, при котором плавится железо. Используются как основа или добавка для получения легированных сталей.
  3. Урановые – актиноиды и металлы, полученные в результате синтеза. Большое применение находят в атомной энергетике.
  4. Редкоземельные – неодим, церий, лантан. Все металлы обладают родственными химическими свойствами, но совершенно разными физическими параметрами. Находят свое применение как присадки к сплавам.
  5. Щелочноземельные – кальций, натрий, литий. В свободном виде практического применения не имеют.

Цветные металлы

Вторая по величине группа имеет небольшую плотность, хорошую пластичность, невысокую температуру плавления, преобладающие цвета (белый, желтый, красный) и состоит из следующих металлов:

  • Легкие – магний, стронций, цезий, кальций. В природе встречаются только в прочных соединениях. Применяются для получения легких сплавов разного назначения.
  • Благородные. Примеры металлов: платина, золото, серебро. Они обладают повышенной устойчивостью к коррозии.
  • Легкоплавкие – кадмий, ртуть, олово, цинк. Имеют невысокую температуру плавления, участвуют в производстве разных сплавов.

Низкая прочность цветных металлов не позволяет их использовать в чистом виде, поэтому в промышленности их применяют в виде сплавов.

Медь и сплавы с медью

В чистом виде имеет розовато-красный цвет, маленькое удельное сопротивление, небольшую плотность, хорошую теплопроводность, отличную пластичность, обладает стойкостью к коррозии. Находит широкое применение как проводник электрического тока.

Для технических нужд используют два вида сплавов из меди: латуни (медь с цинком) и бронзы (медь с алюминием, оловом, никелем и другими металлами). Латунь используется для изготовления листов, лент, труб, проволоки, арматуры, втулок, подшипников.

Из бронзы изготавливают плоские и круглые пружины, мембраны, разную арматуру, червячные пары.

Алюминий и сплавы

Этот очень легкий металл, имеющий серебристо-белый цвет, обладает высокой коррозийной стойкостью. У него хорошая электропроводность и пластичность. Благодаря своим характеристикам нашел применение в пищевой, легкой и электропромышленности, а также в самолетостроении. Сплавы из алюминия очень часто используются в машиностроении для изготовления особо ответственных деталей.

Магний, титан и их сплавы

Магний неустойчив к коррозии, зато не существует легче металла, используемого для технических нужд. В основном его добавляют в сплавы с другими материалами: цинком, марганцем, алюминием, которые прекрасно режутся и являются достаточно прочными.

Из сплавов с легким металлом магнием изготавливают корпусы фотоаппаратов, различных приборов и двигателей. Титан нашел свое применение в ракетной отрасли, а также машиностроении для химической промышленности.

Титаносодержащие сплавы имеют небольшую плотность, прекрасные механические свойства и стойкость к коррозии. Они хорошо поддаются обработке давлением.

Антифрикционные сплавы

Такие сплавы определены для увеличения срока службы поверхностей, испытывающих трение. Они сочетают в себе следующие характеристики металла – хорошую теплопроводность, маленькую температуру плавления, микропористость, слабый коэффициент трения. К антифрикционным относят сплавы, основой которых является свинец, алюминий, медь или олово. К самым применяемым относятся:

  • баббит. Его изготовляют на основе свинца и олова. Используют в производстве вкладышей для подшипников, которые работают на больших скоростях и при ударных нагрузках;
  • алюминиевые сплавы;
  • бронза;
  • металлокерамические материалы;
  • чугун.

Мягкие металлы

По системе классификации металлов это золото, медь, серебро, алюминий, но среди самых мягких выделяют цезий, натрий, калий, рубидий и другие. Золото сильно распылено в природе.

Оно есть в морской воде, организме человека, а также его можно встретить практически в любом осколке гранита. В чистом виде золото имеет желтый с оттенком красного цвет, так как металл мягкий — его можно поцарапать даже ногтем.

Под влиянием окружающей среды золото достаточно быстро разрушается. Этот металл является незаменимым для электрических контактов. Несмотря на то что серебра в двадцать раз больше, чем золота, он также является редким.Используется для производства посуды, ювелирных украшений.

Легкий металл натрий также получил широкое распространение, востребован практически в каждой отрасли промышленности, в том числе химической — для производства удобрений и антисептиков.

Металлом является ртуть, хоть и находится в жидком состоянии, поэтому считается одним из самых мягких в мире. Этот материал используется в оборонной и химической промышленности, сельском хозяйстве, электротехнике.

Твердые металлы

В природе практически нет самых твердых металлов, поэтому добыть их очень сложно. В большинстве случаев их находят в упавших метеоритах. Хром принадлежит к тугоплавким металлам и является самым твердым из чистейших на нашей планете, к тому же он легко поддается механической обработке.Вольфрам – это химический элемент.

Считается самым твердым при сравнении с другими металлами. Имеет чрезвычайно высокую температуру плавления. Несмотря на твердость, из него можно выковывать любые нужные детали. Благодаря теплоустойчивости и гибкости это наиболее подходящий материал для выплавки небольших элементов, используемых в осветительных приборах.

Тугоплавкий металл вольфрам – основное вещество тяжелых сплавов.

Металлы в энергетике

Металлы, в состав которых входят свободные электроны и положительные ионы, считаются хорошими проводниками.

Это довольно востребованный материал, характеризующийся пластичностью, высокой электропроводностью и способностью легко отдавать электроны.

Из них делают силовые, радиочастотные и специальные провода, детали для электрических установок, машин, для бытовых электроприборов. Лидерами применения металлов для изготовления кабельной продукции считаются:

  • свинец — за большую устойчивость к коррозии;
  • медь — за высокую электропроводность, легкость в обработке, стойкость к коррозии и достаточную механическую прочность;
  • алюминий — за небольшой вес, устойчивость к вибрациям, прочность и температуру плавления.

Категории черных вторичных металлов

К отходам черных металлов предъявляют определенные требования. Для отправки сплавов в сталеплавильные печи потребуются определенные операции по их обработке.

Перед подачей заявки на перевозку отходов необходимо ознакомиться с ГОСТом черных металлов для определения его стоимости. Черный вторичный лом классифицируют на стальной и чугунный.

Если в составе присутствуют легирующие добавки, то его относят к категории «Б». В категорию «А» включены углеродистые: сталь, чугун, присад.

Металлурги и литейщики из-за ограниченности первичной сырьевой базы проявляют активный интерес к вторичному сырью. Использование лома черных металлов вместо металлической руды – это ресурсное, а также энергосберегающее решение. Вторичный черный металл используют как охладитель конвертерной плавки.

Диапазон применения металлов невероятно широк. Черные и цветные неограниченно используются в строительной и машинной индустрии. Не обойтись без цветных металлов и в энергетической промышленности.

Редкие и драгоценные идут на изготовление украшений. В искусстве и медицине находят применение как цветные, так и черные металлы.

Невозможно представить жизнь человека без них, начиная от хозяйственных принадлежностей и до уникальных приборов и аппаратов.

Источник: https://www.syl.ru/article/356127/klassifikatsiya-metallov-harakteristika-metallov-i-oblasti-primeneniya

Характеристика меди

Компания ООО «Эксклюзив-строй» предлагает изделия из меди любой сложности.

Медь — химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным — медь была хорошо известна египтянам еще за 4000 лет до Р. Хр.

Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состаянии на поверхности земли, а с другой — сравнительной легкостью получения ее из соединений.

Древняя Греция и Рим получали медь с острова Кипра (Cyprum), откуда и название ее Cuprum. Особенно важна медь для электротехники.

По электропроводности медь занимает второе место среди всех металлов, после серебра. Однако в наши дни во всем мире электрические провода, на которые раньше уходила почти половина выплавляемой меди, все чаще делают из аллюминия. Он хуже проводит ток, но легче и доступнее.

Медь же, как и многие другие цветные металлы, становится все дефицитнее. Если в 19 в. медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%-ные медные руды считаются очень богатыми, а промышленность многих стран перерабатывает руды, в которых всего 0,5% меди.

Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов.

Чаще всего медь вносят в почву в виде пятиводного сульфата — медного купороса. В значительных количествах он ядовит, как и многие другие соединениямеди, особенно для низших организмов.

В малых же дозах медь совершенно необходима всему живому.

Химические и физические свойства элемента.

Медь — химический элемент I группы периодической системы Менделеева; атомный номер 29, атомная масса 63,546. Температура плавления- 1083° C; температура кипения — 2595° C; плотность — 8,98 г/см3.

По геохимической классификации В.М.

Гольдшмидта, медь относится к халькофильным элементам с высоким сродством к S, Se, Te, занимающим восходящие части на кривой атомных объемов; они сосредоточены в нижней мантии, образуют сульфиднооксидную оболочку.

Вернадским в первой половине 1930 г были проведены исследования изменения изотопного состава воды, входящего в состав разных минералов, и опыты по разделению изотопов под влиянием биогеохимических процессов, что и было подтверждено последующими тщательными исследованиями. Как элемент нечетный состоит из двух нечетных изотопов 63 и 65 На долю изотопа Cu (63) приходится 69,09%, процентное содержание изотопа Cu (65) — 30,91%. В соединениях медь проявляет валентность +1 и +2, известны также немногочисленные соединения трехвалентной меди.

К валентности 1 относятся лишь глубинные соединения, первичные сульфиды и минерал куприт — Cu2O. Все остальные минералы, около сотни отвечают валентности два. Радиус одноволентной меди +0.96, этому отвечает и эк — 0,70. Величина атомного радиуса двухвалентной меди — 1,28; ионного радиуса 0,80.

Очень интересна величена потенциалов ионизации: для одного электрона — 7,69, для двух — 20,2. Обе цифры очень велики, особенно вторая, показывающая большую трудность отрыва наружных электронов.

Одновалентная медь является равноквантовой и потому ведет к бесцветным солям и слабо окрашенным комплексам, тогда как разноквантовя двух валентная медь характеризуется окрашенностью солей в соединении с водой.

Медь — металл сравнительно мало активный. В сухом воздухе и кислороде при нормальных условиях медьне окисляется. Она достаточно легко вступает в реакции с галогенами, серой, селеном. А вот с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют.

Электроотрицательность атомов — способность при вступлении в соединения притягивать электроны. Электроотрицательность Cu2+ — 984 кДЖ/моль, Cu+ — 753 кДж/моль.

Элементы с резко различной ЭО образуют ионную связь, а элементы с близкой ЭО — ковалентую. Сульфиды тяжелых металлов имеют промежуточную связь, с большей долей ковалентной связи ( ЭО у S-1571, Cu-984, Pb-733).

Медь является амфотерным элементом — образует в земной коре катионы и анионы.

Читайте также:  Схемы зарядных устройств для автомобильных аккумуляторов

Минералы

Медь входит более чем в 198 минералов, из которых для промышленности важны только 17, преимущественно сульфидов, фосфатов, силикатов, карбонатов, сульфатов. Главными рудными минералами являются халькопирит CuFeS2, ковеллин CuS, борнит Cu5FeS4, халькозин Cu2S.

Окислы: тенорит, куприт. Карбонаты: малахит, азурит. Сульфаты: халькантит, брошантит. Сульфиды: ковеллин, халькозин, халькопирит, борнит.

Чистая медь — тягучии, вязкий металл красного, в изломе розового цвета, в очень тонких слоях на просвет медь выглядит зеленовато-голубой. Эти же цвета, характерны и для многих соединений меди, как в твердом состаянии, так и в растворах.

Понижение окраски при повышении валентности видно из следующих двух примеров:

CuCl — белый, Cu2O — красный, CuCl2+H2O — голубой, CuO — черный

Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем намечается интересный практический признак для поисков.

Практическое значение имеют: самородная медь, сульфиды, сульфосоли и карбонаты (силикаты).

Придерживаясь принципа»заказчик, прежде всего», квалифицированный персонал нашей компании творчески подходит к решению каждой задачи, считая основой своей деятельности высокое качество обслуживания клиентов.

Изготовим: Доборные Элементы кровли, Водосточные Системы, Флюгарки, Отливы, Колпаки на забор, Дымники, Флюгера.

Медная Кровля Эксклюзив.

Источник: http://slav-stroy.org/harakteristika-medi

Цветные металлы, их свойства и сплавы (стр. 1 из 3)

Цветные металлы, их свойства и сплавы

К цветным металлам* и сплавам относятся практически все металлы и сплавы, за исключением железа и его сплавов, образующих группу чёрных металлов. Цветные металлы встречаются реже, чем железо и часто их добыча стоит значительно дороже, чем добыча железа. Однако цветные металлы часто обладают такими свойствами, какие у железа не обнаруживаются, и это оправдывает их применение.

Выражение «цветной металл» объясняется цветом некоторых тяжёлых металлов: так, например, медь имеет красный цвет.

Если металлы соответствующим образом смешать (в расплавленном состоянии), то получаются сплавы. Сплавы обладают лучшими свойствами, чем металлы, из которых они состоят. Сплавы, в свою очередь, подразделяются на сплавы тяжёлых металлов, сплавы лёгких металлов и т.д.

Цветные металлы по ряду признаков разделяют на следующие группы:

тяжёлые металлы — медь, никель, цинк, свинец, олово;

лёгкие металлы — алюминий, магний, титан, бериллий, кальций, стронций, барий, литий, натрий, калий, рубидий, цезий;

благородные металлы — золото, серебро, платина, осмий, рутений, родий, палладий;

малые металлы — кобальт, кадмий, сурьма, висмут, ртуть, мышьяк;

тугоплавкие металлы — вольфрам, молибден, ванадий, тантал, ниобий, хром, марганец, цирконий;

редкоземельные металлы — лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, иттербий, диспрозий, гольмий, эрбий, тулий, лютеций, прометий, скандий, иттрий;

рассеянные металлы — индий, германий, таллий, таллий, рений, гафний, селен, теллур;

радиоактивные металлы — уран, торий, протактиний, радий, актиний, нептуний, плутоний, америций, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий.

Чаще всего цветные металлы применяют в технике и промышленности в виде различных сплавов, что позволяет изменять их физические, механические и химические свойства в очень широких пределах. Кроме того, свойства цветных металлов изменяют путём термической обработки, нагартовки, эа счёт искусственного и естественного старения и т. д.

Цветные металлы подвергают всем видам механической обработки и обработки давлением — ковке, штамповке, прокатке, прессованию, а также резанию, сварке, пайке.

Из цветных металлов изготовляют литые детали, а также различные полуфабрикаты в виде проволоки, профильного металла, круглых, квадратных и шестигранных прутков, полосы, ленты, листов и фольги.

Значительную часть цветных металлов используют в виде порошков для изготовления изделий методом порошковой металлургии, а также для изготовления различных красок и в качестве антикоррозионных покрытий.

· — некоторые химические элементы Национальная Комиссия Украины (НКУ) рекомендует называть так: Серебро — Аргентумом, Золото — Аурумом, Углерод — Карбоном, Медь — Купрумом и т.д.

Названия элементов в определённых случаях употребляются как имена собственные — пишутся с большой буквы в середине предложения. В школах дети (на уроках химии) называют азотную кислоту нитратной, серную — сульфурной и т.д. В остальных случаях (география, история и пр.

) применяются общеупотребительные названия, т.е. золото называется золотом, медь — медью и т.д.

Цветные металлы и сплавы

Сплавы цветных металлов применяют для изготовления деталей, работающих в условиях агрессивной среды, подвергающихся трению, требующих большой теплопроводности, электропроводности и уменьшенной массы.

Медь— металл красноватого цвета, отличающийся высокой теплопроводностью и стойкостью против атмосферной коррозии. Прочность невысокая: ав = 180… …240 МПа при высокой пластичности б>50%.

Латунь — сплав меди с цинком (10…40 %), хорошо поддается холодной прокатке, штамповке, вытягиванию<\p>

Источник: http://MirZnanii.com/a/195439/tsvetnye-metally-ikh-svoystva-i-splavy

Медь

Общие сведения и методы получения

Медь (Сu) — металл, имеющий в компактном виде в зависимости от способа изготовления и примесей красно-коричневый и светло-розовый цвет, в диспергированном состоянии (порошок) — кирпично-красный цвет.

Один из первых металлов, которые человек стал применять для тех­нических целей. Найденные в Египте древнейшие изделия из самород­ной меди относятся к пятому тысячелетию до н. э. Латинское название меди cuprum связано с островом Кипр, где уже в III в. до нашей эры были медные рудники и выплавлялась медь.

Содержание меди в земной коре 0,01 % (по массе). Чаще, чем другие металлы, встречается самородная медь.

Физические свойства

Атомные характеристики. Атомный номер 29, атомная масса 63,54 а. е. м., атомный объем 7,21*10-6 м3/моль, атомный радиус 0,128 нм, ионный радиус 0,098 нм. Конфигурация внешних электронных оболочек атома 3d104s1.

Потенциалы ионизации атомов / (эв): 7,73; 20; 29, медь имеет г. ц. к. решетку с периодом а=0,36148 нм. Энергия кри­сталлической решетки 342 мкДж/кмоль. Координационное число 12, межатомное расстояние 0,255 нм.

Электроотрнцательность 1,9.

Природная медъ состоит из смеси двух стабильных изотопов с мас­совыми числами 63 (69,1 %) и 65 '(30,9%).

Получены радиоактивные изотопы 58Cu , 59Cu , 60Cu , 61Cu , 62Cu , 64Cu , 66Cu , 67Cu , 68Си с периодами полураспада от 0,18 с до 58,5 ч.

Из искусственных радиоактивных изо­топов в качестве меченых атомов используют 61Си (период полураспада 3,3 ч) и 64Си (период полураспада 12,8 ч). Эффективное поперечное се­чение захвата тепловых нейтронов атомов меди 3,59*10-28 м2.

Плотность. Плотность меди р зависит от ее чистоты и способа про­изводства. Плотность технически чистой меди 8,9—8,94 Мг/м3, а особо чистой (более 99,99 % Си) — 8,96 Мг/м3. Плотность жидкой меди 8,03 Мг/м3. Изменение плотности чистой меди с увеличением темпера­туры

Электрические и магнитные. Удельная электрическая проводимость меди чистотой 99,99 % при 293 К а=58,8 МСм/м, а при 73 К а=200 МСм/м. Электрическая проводимость меди заметно ие изменяется под влиянием висмута, свинца, серы, селена и теллура, сильно снижается под влиянием незначительных количеств мышьяка, а также сурьмы.

Химические свойства

Нормальный электродный потенциал реакции Сu—2е*=еСu2+ ср0=0,34 В а реакции Cu = t * Cu 2 + ср0=0,52 В. В соединениях проявляет степени окисления +1, +2, +3 (реже).

Медь обладает удовлетворительной коррозионной стойкостью в ат­мосферных условиях при комнатной температуре. Коррозионная стой­кость меди, как правило, тем выше, чем чище медь. Наиболее вредные примеси — кислород, сера, висмут, свинец и железо.

Сухой воздух и вла­га при комнатной температуре порознь не действуют на медь, но во влажном воздухе, содержащем С02, на поверхности меди образуется зеленая пленка основного карбоната.

При нагреве на воздухе выше 185°С медь покрывается слоем оксида (I) меди Cu 2 0, который прн 1025 °С переходит в оксид (II) меди СиО.

При нагревании медь растворяется в серной и азотной кислотах, а также в аммиаке.

Влажный хлор взаимодействует с медью при обычной температуре, образуя СиС12, хорошо растворимую в воде. Медь легко соединяется с другими галогенами. Особое сродство проявляет медь к сере и селену. С водородом, азотом и углеродом медь не реагирует даже при высоких температурах.

Примеси, присутствующие в меди и попадающие в нее при плавке, сильно влияют на физические и технологические свойства.

Алюминий повышает коррозионную стойкость и резко снижает окис-ляемость меди при комнатной и повышенной температурах.

Висмут в твердом состоянии практически в меди нерастворим.

Свинец практически ие растворяется в меди в твердом состоянии. Сурьма растворима в меди в твердом состоянии; при температуре эвтек­тики 645 °С растворяется до 9,5 % Sb . С понижением температуры раст­воримость ее резко уменьшается.

Кислород мало растворим в меди в твердом состоянии. При кристал­лизации кислород выделяется в виде эвтектики медь — оксид (I) меди, располагающейся по границам зерен, что служит причиной хрупкости и хладноломкости меди при холодной деформации.

При повышении содер­жания кислорода заметно снижаются пластичность и коррозионные свой­ства меди, а также затрудняются процессы пайки, сварки, лужения и плакирования.

При содержании более 0,1 % 02 медь легко разрушается при горячей обработке давлением.

Водород значительно растворим в твердой н жидкой меди; с пони­жением температуры растворимость снижается.

Железо растворяется в меди в твердом состоянии незначительно.

Мышьяк растворим в меди в твердом состоянии до 7,5 %.

Сера хорошо растворяется в жидкой меди; в твердой меди раствори­мость снижается до нуля.

Фосфор ограниченно растворим в меди в твердом состоянии. При 700°С растворимость достигает 1,3 %, а при 200″С снижается до 0,4 %.

Селен в твердом состоянии в меди растворяется менее 0,1 %. При за­твердевании селен выделяется в виде Cu 2 Se .

Теллур незначительно растворим в меди в твердом состоянии (око­ло 0,01 %). Электрохимический эквивалент 0,32938 мг/Кл.

Технологические свойства

Температура литья 1150—1230″С. Линейная усадка при литье в кокиль 2,1 %, жидкотекучесть (литье в песок) 35 см.

Медь высокопластична в отожженном состоянии, при обработке давлением выдерживает без промежуточных отжигов обжатие до 85—95%. Вакуумная плавка улучшает пластичность меди.

Температура прессования 800—950 °С, температура горячей прокатки 820—860 °С. Температура полного отжига 500—700 «С, а отжига для уменьшения остаточных напряжений 180—230 «С. В качестве травителя полуфабрикатов после отжига применяют 10 %-ный водный раствор H2SO4.

Атмосферой для светлого отжига бескислородной меди служат водород, инертный газ, пары воды, смесь углекислого газа и оксида угле­рода, смесь азота с 2—3 % Н2. Для светлого отжига технической меди, содержащей 0,02—0,03% 02, используют пары воды при отсутствии ве­ществ, вызывающих ее диссоциацию, смесь азота с 2—3 % водорода.

Качество меди можно улучшить применением вакуума при горячен де­формации.

Температура рекристаллизации в зависимости от чистоты меди состав­ляет 257—377 °С. Медь лучше обрабатывается резанием в деформиро­ванном состоянии. Хорошо поддается сварке и пайке. Коэффициент тре­ния меди в паре со сталью со смазкой (веретенное масло № 2) состав­ляет 0,011, а без смазки 0,43.

Небольшие количества висмута (0,005 %) вызывают разрушение меди при горячей обработке давлением. При повышенном содержании висму­та медь становится хрупкой и в холодном состоянии.

Присутствие свин­ца вызывает разрушение меди при горячей обработке давлением, сера заметно снижает пластичность при горячей и холодной обработке дав­лением, фосфор повышает жидкотекучесть и оказывает положительное влияние при сварке, селен и теллур улучшают обрабатываемость реза­нием.

Области применения

Широкое применение меди в промышленности обусловлено ее высокой электрической проводимостью, пластичностью, хорошей коррозионной устойчивостью, теплопроводностью, хорошими литейными качествами и др. Из цветных металлов медь уступает по уровню потребления только алюминию. Основные потребители меди и ее соединений в развитых стра­нах:

а) электротехника и электроника (обмотки в электромашинах, прово-да, кабели, в частности, кабели для подземных линий высокого напряже-ния, шины, детали в телеграфных, телефонных и радио-телевизионных ап-

паратах, печатные схемы);

Источник: https://ibrain.kz/himiya-svoystva-elementov/med

Ссылка на основную публикацию