Особенности плазменной резки металла

Плазменная резка – все нюансы технологии резки металла плазмой

Особенности плазменной резки металла

В последнее время использование плазменного потока для раскроя материалов набирает все большую популярность. Еще более расширяет сферу использования данной технологии появление на рынке ручных аппаратов, с помощью которых выполняется плазменная резка металла.

Плазменная резка металла значительной толщины

Суть плазменной резки

Плазменная резка предполагает локальный нагрев металла в зоне разделения и его дальнейшее плавление. Такой значительный нагрев обеспечивается за счет использования струи плазмы, формируют которую при помощи специального оборудования. Технология получения высокотемпературной плазменной струи выглядит следующим образом.

  • Изначально формируется электрическая дуга, которая зажигается между электродом аппарата и его соплом либо между электродом и разрезаемым металлом. Температура такой дуги составляет 5000 градусов.
  • После этого в сопло оборудования подается газ, который повышает температуру дуги уже до 20000 градусов.
  • При взаимодействии с электрической дугой газ ионизируется, что и приводит к его преобразованию в струю плазмы, температура которой составляет уже 30000 градусов.

Полученная плазменная струя характеризуется ярким свечением, высокой электропроводностью и скоростью выхода из сопла оборудования (500–1500 м/с). Такая струя локально разогревает и расплавляет металл в зоне обработки, затем осуществляется его резка, что хорошо видно даже на видео такого процесса.

В специальных установках для получения плазменной струи могут использоваться различные газы. В их число входят:

  • обычный воздух;
  • технический кислород;
  • азот;
  • водород;
  • аргон;
  • пар, полученный при кипении воды.

Технология резки металла с использованием плазмы предполагает охлаждение сопла оборудования и удаление частичек расплавленного материала из зоны обработки.

Обеспечивается выполнение этих требований за счет потока газа или жидкости, подаваемых в зону, где осуществляется резка.

Характеристики плазменной струи, формируемой на специальном оборудовании, позволяют произвести с ее помощью резку деталей из металла, толщина которых доходит до 200 мм.

Устройство и принцип действия плазменной резки

Аппараты плазменной резки успешно используются на предприятиях различных отраслей промышленности. С их помощью успешно выполняется резка не только деталей из металла, но и изделий из пластика и натурального камня.

Благодаря таким уникальным возможностям и своей универсальности, данное оборудование находит широкое применение на машиностроительных и судостроительных заводах, в рекламных и ремонтных предприятиях, в коммунальной сфере.

Огромным преимуществом использования таких установок является еще и то, что они позволяют получать очень ровный, тонкий и точный рез, что является важным требованием во многих ситуациях.

Оборудование для плазменной резки

На современном рынке предлагаются аппараты, с помощью которых выполняется резка металла с использованием плазмы, двух основных типов:

  • аппараты косвенного действия — резка выполняется бесконтактным способом;
  • аппараты прямого действия — резка контактным способом.

Оборудование первого типа, в котором дуга зажигается между электродом и соплом резака, используется для обработки неметаллических изделий. Такие установки преимущественно применяются на различных предприятиях, вы не встретите их в мастерской домашнего умельца или в гараже ремонтника.

Аппарат для плазменной резки Ресанта ИПР-25

В аппаратах второго типа электрическая дуга зажигается между электродом и непосредственно деталью, которая, естественно, может быть только из металла.

Благодаря тому, что рабочий газ в таких устройствах нагревается и ионизируется на всем промежутке (между электродом и деталью), струя плазмы в них отличается более высокой мощностью.

Именно такое оборудование может использоваться для выполнения ручной плазменной резки.

Любой аппарат плазменной резки, работающий по контактному принципу, состоит из стандартного набора комплектующих:

  • источника питания;
  • плазмотрона;
  • кабелей и шлангов, с помощью которых выполняется соединение плазмотрона с источником питания и источником подачи рабочего газа;
  • газового баллона или компрессора для получения струи воздуха требуемой скорости и давления.

Главным элементом всех подобных устройств является плазмотрон, именно он отличает такое оборудование от обычного сварочного. Плазмотроны или плазменные резаки состоят из следующих элементов:

  • рабочего сопла;
  • электрода;
  • изолирующего элемента, который отличается высокой термостойкостью.

Резак для ручной плазменной резки

Основное назначение плазмотрона состоит в том, чтобы преобразовать энергию электрической дуги в тепловую энергию плазмы.

Газ или воздушно-газовая смесь, выходящие из сопла плазмотрона через отверстие небольшого диаметра, проходят через цилиндрическую камеру, в которой зафиксирован электрод.

Именно сопло плазменного резака обеспечивает требуемую скорость движения и форму потока рабочего газа, и, соответственно, самой плазмы. Все манипуляции с таким резаком выполняются вручную: оператором оборудования.

Учитывая тот факт, что держать плазменный резак оператору приходится на весу, бывает очень сложно обеспечить высокое качество раскроя металла.

Нередко детали, для получения которых была использована ручная плазменная резка, имеют края с неровностями, следами наплыва и рывков.

Для того чтобы избежать подобных недостатков, применяют различные приспособления: подставки и упоры, позволяющие обеспечить ровное движение плазмотрона по линии раскроя, а также постоянство зазора между соплом и поверхностью разрезаемой детали.

Необходимые источники питания

Несмотря на то что все источники питания для плазменных резаков работают от сети переменного тока, часть из них может преобразовывать его в постоянный, а другие — усиливать его.

Но более высоким КПД обладают те аппараты, которые работают на постоянном токе.

Установки, работающие на переменном токе, применяются для резки металлов с относительно невысокой температурой плавления, к примеру, алюминия и сплавов на его основе.

В тех случаях, когда не требуется слишком высокая мощность плазменной струи, в качестве источников питания могут использоваться обычные инверторы. Именно такие устройства, отличающиеся высоким КПД и обеспечивающие высокую стабильность горения электрической дуги, используются для оснащения небольших производств и домашних мастерских.

Конечно, разрезать деталь из металла значительной толщины с помощью плазмотрона, питаемого от инвертора, не получится, но для решения многих задач он подходит оптимально.

Большим преимуществом инверторов является и их компактные габариты, благодаря чему их можно легко переносить с собой и использовать для выполнения работ в труднодоступных местах.

Более высокой мощностью обладают источники питания трансформаторного типа, с использованием которых может осуществляться как ручная, так и механизированная резка металла с использованием струи плазмы. Такое оборудование отличается не только высокой мощностью, но и более высокой надежностью. Им не страшны скачки напряжения, от которых другие устройства могут выйти из строя.

Резка по шаблону

У любого источника питания есть такая важная характеристика, как продолжительность включения (ПВ). У трансформаторных источников питания ПВ составляет 100%, это означает, что их можно использовать целый рабочий день, без перерыва на остывание и отдых. Но, конечно, есть у таких источников питания и недостатки, наиболее значимым из которых является их высокое энергопотребление.

Как выполняется ручная плазменная резка?

Первое, что необходимо сделать для того чтобы начать использование аппарата для плазменной резки металла, — это собрать воедино все его составные элементы. После этого инвертор или трансформатор подсоединяют к заготовке из металла и к сети переменного тока.

Далее технология резки предусматривает приближение сопла устройства к заготовке на расстояние порядка 40 мм и зажигание так называемой дежурной дуги, за счет которой будет осуществляться ионизация рабочего газа. После того как дуга загорелась, в сопло подается воздушно-газовый поток, который и должен сформировать плазменную струю.

Когда из рабочего газа сформируется плазменная струя, обладающая высокой электропроводностью, между электродом и деталью создается уже рабочая дуга, а дежурная автоматически отключается.

Задача такой дуги состоит в том, чтобы поддерживать требуемый уровень ионизации плазменной струи. Случается, что рабочая дуга гаснет, в таком случае следует перекрыть подачу газа в сопло и повторить все описанные действия заново.

Лучше всего, если нет опыта выполнения такого процесса, посмотреть обучающее видео, где подробно показана ручная резка металла.

Источник: http://met-all.org/obrabotka/rezka/plazmennaya-rezka-vse-nyuansy-tehnologii-rezki-metalla-plazmoj.html

Что такое плазменная резка металлов – описание технологии

Для резки металлов используют несколько различных методов отличающихся друг от друга себестоимостью и эффективностью. Некоторые способы используются исключительно для промышленных целей другие также можно применять и в быту.К последним относится плазменная резка металлов.

Эффективность плазменного раскроя ограничивается опытом мастера и правильным выбором установки.

  • Что такое плазменная резка металла?
  • На чем основан принцип проведения работ?
  • Какие сферы применения имеет этот способ раскроя материалов?

Основы резки металлов плазмой

Чтобы понять основы резки металла с помощью плазменного метода следует для начала уяснить, что же такое плазма? От правильного понимания того как устроен плазматрон и принципов работы с ним зависит качество конечного результата.

Термическая плазменная обработка металлов зависит от параметров рабочей струи газа или жидкости, направленной под давлением на обрабатываемую поверхность. Для достижения необходимых результатов струю доводят до следующих характеристик:

  • Скорость – струя направляется под высоким давлением на поверхность материала. Можно сказать, что плазменный раскрой металла основан на разогревании металла до температуры плавления и быстрого выдувания его. Рабочая скорость струи при этом составляет от 1,5 до 4 км в сек.
  • Температура – для образования плазмы необходимо практически моментально разогреть воздух до 5000-30000°C. Высокая температура достигается благодаря созданию электрической дуги. При достижении необходимой температуры воздушный поток ионизируется и меняет свои свойства, приобретая электропроводность. Технология плазменной резки металла подразумевает использование систем нагнетания воздуха, а также осушителей, которые удаляют влагу.
  • Наличие электрической цепи. Все о раскрое металла плазмой можно узнать только на практике. Но некоторые особенности необходимо учитывать еще до приобретения установки. Так, существуют плазмотроны косвенного и прямого воздействия. И если для вторых обязательно, чтобы обрабатываемый материал пропускал электричество и был включен в общую электрическую сеть (выступая в роли электрода), то для первых такой необходимости нет. Плазма для резки металла в таком случае получается с помощью встроенного электрода внутри держателя. Этот способ используют для металлов и других материалов, которые не проводят электричество.

Еще один важный момент, который следует учитывать, это то, что плазменная резка толстого металла практически не выполняется, так как это ведет к увеличенным материальным затратам и малоэффективно.

Характеристики и принцип резки металла плазмой

Основной принцип работы плазменной резки металла можно описать следующим образом:

  1. Компрессор под давлением подает воздух на горелку плазмотрона.
  2. Воздушный поток моментально разогревается благодаря воздействию на него электрического тока.

    По мере нагревания воздушная масса начинает пропускать сквозь себя электричество, в результате чего и образуется плазма. В некоторых моделях вместо воздуха используют инертные газы.

  3. Резка стали плазмой, если рассмотреть ее более подробно осуществляется методом быстрого узконаправленного нагревания поверхности до необходимой температуры с последующим выдуванием расплавленного металла.
  4. При выполнении работ неизбежно образуются отходы от плазменной резки.

    Отходы включают высечку или остатки листа после высечения необходимых деталей, а также окалины или остаток расплавленного металла.

Так как процесс связан с моментальным разогревом разрезаемого материала до жидкого состояния, толщина металла при резке составляет:

  • алюминий до 120 мм;
  • медь 80 мм;
  • углеродистая и легированная сталь до 50 мм;
  • чугун до 90 мм.

Существуют два основных способа обработки материалов, от которых зависят характеристики плазменной резки. А именно:

  1. Плазменно-дуговая – способ подходит для всех видов металла, которые в состоянии проводить электрический ток. Обычно плазменно-дуговую резку используют для промышленного оборудования.

    Суть способа сводится к тому, что плазма образовывается за счет дуги, которая появляется непосредственно между поверхностью обрабатываемого материала и плазмотроном.

  2. Плазменно-струйная – в этом случае дуга возникает в самом плазмотроне. Плазменно-струйный вариант обработки более универсален, позволяет разрезать неметаллические материалы. Единственным недостатком является необходимость периодической замены электродов.

Плазменная резка металла работает как обычная дуговая, но без использования привычных электродов. Но эффективность способа обработки прямо пропорциональна толщине обрабатываемого материала.

Скорость и точность резки металла плазмой

Как и при любом другом виде термической обработки, при плазменной резке металла происходит определенное оплавление металла, что отражается на качестве реза. Существуют и другие особенности, которые являются характерными для этого метода. А именно:

  • Конусность – в зависимости от профессионализма мастера и производительности установки, конусность может составлять от 3° до 10°.
  • Оплавление кромки – независимо от того, какие режимы резки металла используются и от профессионализма мастера выполняющего работы по обработке металла, не удается избежать небольшого оплавления поверхности при самом начале выполнения работ.
  • Характеристики реза – качество и скорость плазменной резки металла зависит от того, какие именно операции необходимо выполнить. Так разделительный рез с низким качеством выполняется быстрее всего, при этом большинство ручных установок способны разрезать металл до 64 мм. Для фигурной резки возможна обработка деталей толщиной всего до 40 мм.
  • Скорость выполнения работ – обычная резка металла с помощью плазматрона осуществляется быстро и с минимальным расходом электроэнергии и напряжения. Скорость плазменной резки металла согласно техническим характеристикам ручных установок и ГОСТ составляет не более 6500 мм в минуту.

От профессионализма мастера во многом зависит качество выполнения работ. Чистый и точный рез с минимальным отклонением от необходимых размеров может выполнить только работник с профильным образованием.

Без соответствующей подготовки выполнить фигурную резку вряд ли получится.

Плазменная резка цветных металлов

При обработке цветных металлов используются разные способы резки в зависимости от типа материала, его плотности и других технических характеристик. Для разрезания цветных сплавов требуется соблюдения следующих рекомендаций.

  • Резка нержавеющих сталей – для выполнения операций не рекомендуется использование сжатого воздуха, в зависимости от толщины материала может применяться азот в чистом виде, либо смешанный с аргоном. Необходимо учитывать, что нержавеющая сталь чувствительна к воздействию переменного тока, это может привести к изменению ее структуры и как следствие быстрому выходу из эксплуатации. Резка нержавейки плазмой осуществляется с помощью установки использующей принцип косвенного воздействия.
  • Плазменная резка алюминия – для материала с толщиной до 70 мм, может использоваться сжатый воздух. Применение его нецелесообразно при малой плотности материала. Более качественный рез листа алюминия до 20 мм достигается при использовании чистого азота, а более 70 мм до 100 мм включительно с помощью азота с водородом. Резка алюминия плазмой при толщине от 100 мм осуществляется смесь аргона с водородом. Этот же состав рекомендовано использовать для меди и высоколегированной толстостенной стали.

Где применяется плазменный раскрой металла

Использование плазмотронов не зря пользуется такой большой популярностью. При относительно простой эксплуатации и незначительной стоимости ручной установки (по сравнению с другим оборудованием для резки) удается достичь высоких показателей относительно качества реза.

Применение плазменной резки металла получило распространение в следующих сферах производства:

  • Обработка металлопроката – с помощью плазмы удается разрезать практически любой тип металла, включая цветной, тугоплавкий и черный.
  • Изготовление металлоконструкций.
  • Художественная ковка и обработка деталей. С помощью плазменного резака можно сделать деталь практически любой сложности.
  • Различные виды промышленности, машиностроение, капитальное строительство зданий авиастроение и др. – во всех этих сферах деятельности не обойтись без использования плазменных резаков.

Применение станков с плазменной резкой не заменило ручных установок.

Так художественная резка металла плазмой позволяет сделать уникальные детали точно соответствующие замыслу художника, для использования их в качестве декоративных украшений для заборов и лестниц, а также перил, ограждений и т. д.

Резка металла плазмой – преимущества и недостатки

Без резки металла не может обойтись практически ни одно промышленное предприятие, так или иначе связанное с металлопрокатом. Быстрое разрезание листового материала на заготовки, декоративная фигурная резка металла плазмой, вырезание точных отверстий – все это можно выполнить достаточно быстро с помощью плазмотрона.

Плюсы, которые имеет метод, заключаются в следующем:

  • Высокая производительность и скорость обработки деталей. По сравнению с обычным электродным методом можно выполнить объемы работ от 4 до 10 раз больше.
  • Экономичность – плазменный метод намного выигрывает на фоне стандартных способов обработки материалов. Единственные ограничения связанны с толщиной металла. Нецелесообразно и экономически невыгодно разрезать с помощью плазмы сталь толще 5 см.
  • Точность – деформации от тепловой обработки практически незаметны и не требуют дополнительной обработки впоследствии.
  • Безопасность.

Все эти преимущества плазменной резки металла объясняют, почему метод пользуется настолько широкой популярностью не только в промышленных, но и бытовых целях.Но говоря о плюсах необходимо заметить и некоторые отрицательные стороны:

  • Ограничения, связанные с толщиной реза. Даже у мощных установок максимальная плотность обрабатываемой поверхности не может быть выше, чем 80-100 мм.
  • Жесткие требования относительно выполнения обработки деталей. От мастера требуется четко придерживаться угла наклона резака от 10 до 50 градусов. При несоблюдении этого требования нарушается качество реза, а также ускоряется износ комплектующих.

Сравнение плазменной и лазерной резки металла

Отличие лазерной резки металла от плазменной заключается в методах воздействия на поверхность материала.

Лазерные установки обеспечивают большую производительность и скорость обработки деталей, при этом после выполнения операции наблюдается меньший процент оплавленности.

Минусом лазерного оборудования является его высокая стоимость, а также то, что толщина разрезаемого материала должна быть меньше 20 мм.

По сравнению с лазером плазмотрон имеет меньшую стоимость, более широкую сферу применения и функциональные возможности.

Источник: http://stroy-plys.ru/246-plazmennaya-rezka-metallov.html

Особенности плазменной резки металла: принцип работы плазмореза и плазмотрона

Плазменная резка металлических заготовок нашла широкое применение в разных сферах человеческой деятельности.

Сегодня технологию используют в судостроении и машиностроении, коммунальной сфере, а также на любых металлообрабатывающих предприятиях, где происходит изготовление металлоконструкций.

Кроме этого, многие специалисты приобретают плазменное оборудование для частных мастерских, ведь возможность быстро и качественно разрезать любые материалы, проводящие ток, и ряд не токопроводящих материалов (дерево, камень, пластик) выглядит весьма заманчиво.

Особенности плазменной резки металла

Плазменная обработка металла предназначается для эффективного разрезания листового металла и труб, выполнения фигурных резов и изготовления крошечных деталей.

Работу выполняют под воздействием высоких температур, которые создаются посредством плазменной дуги. Достичь таких показателей можно лишь с помощью источника электрического тока, воздуха или резака.

Чтобы избежать возможных сложностей и обучиться базовым тонкостям такой резки, необходимо выяснить, каким образом устроен плазморез, как с ним работать и ряд других моментов.

Итак, прибор, устроенный на основе плазменной технологии, состоит из следующих элементов:

  • Источник электрического питания.
  • Воздушный компрессор.
  • Плазмотрон или плазморез.
  • Кабель-шланговый пакет.

С помощью источника питания осуществляется подача определенной силы тока на резак. В качестве этого узла используется инвертор или трансформатор.

Что касается инверторных моделей, то они характеризуются лёгкостью в плане габаритов и экономностью в плане энергопотребления, при этом их стоимость совсем невысокая.

Однако для разрезания толстостенных заготовок такие варианты не эффективны, поэтому их можно использовать только для частных мастерских и на небольших производствах.

Инверторные плазморезы обладают хорошим КПД, который на 30% превышает показатели трансформаторных моделей, поэтому их часто эксплуатируют для выполнения задач в труднодоступных местах. Связано это с более эффективным горением дуги.

Что касается трансформаторов, то они гораздо громаднее и увесистее, нуждаются в значительном энергопотреблении, но нормально переносят перепады напряжения. Эффективны при обработке заготовок с большой толщиной.

Ключевым элементом любого плазмореза является резак, который состоит из:

  • Сопла.
  • Охладителя/изолятора.
  • Канала, который осуществляет подачу сжатого воздуха.
  • Электрода.

Предназначение компрессора заключается в подаче воздуха, а принцип действия заключается в использовании защитных и других газов, способствующих выработке плазмы. Аппараты с допустимой силой тока до 200 А работают только на сжатом воздухе, причём как для охлаждения, так и для создания плазмообразующих газов. С их помощью можно разрезать толстые заготовки толщиной в 50 мм.

Источник: https://101sovet.guru/sovetyi-mastera/osobennosti-plazmoreza

Плазменная резка и ее особенности

КОГДА РЕЗАТЬ ЛУЧШЕ ПЛАЗМОЙ. ПЛАЗМЕННАЯ РЕЗКА И ЕЕ ОСОБЕННОСТИ Резать металл – ответственная задача. Часто эта задача сопряжена с рядом переменных, которые необходимо учитывать.

Это и толщина металла, и сам материал заготовки, и экономические показатели, и объемы резочных работ. Все это составляет поле вопросов, которые в этом тексте, предлагаемом ниже, мы постараемся для вас осветить. Или, по крайней мере, сделать более понятными.

Таким образом, в этом тексте вы найдете ответы на такие вопросы: • какие существуют способы, чтобы резать металл; • когда лучше применить тот или иной способ металлорезки; • какой способ более экономичный, а главное – при каких условиях; • когда вам точно не понадобится плазменная резка; • а когда без плазменной резки вам не обойтись; • если плазменная резка, то как делать правильно; • какие есть “подводные камни” при плазменной резке.

Может, просто болгаркой, а?

Главный вопрос, который зададим перво-наперво: резать вам надо много и регулярно или нет? Если немного и нерегулярно, то вполне вероятно, что аппарат плазменной резки в вашем случае может и не окупиться. Ведь стоимость такого аппарата (говорим о мобильных, а не о стационарных) все-таки будет побольше, чем цена на болгарку по металлу.

Другими словами, если резать металл вам требуется в быту – например, как это часто бывает, какую-нибудь металлическую трубу на даче, – тогда имело бы смысл обратить внимание на хорошую УШМ (те же Makita, сервисом по которым мы также занимаемся и можем порекомендовать). Болгарка в ряде случаев действительно хороша, и ее достаточно. Но только при а) грубой резке и б) в быту.

После болгарки заготовку надо хорошенько зачищать, это известный эксплуатационный момент. Но зачищать надо только тогда, когда надо качественный ровный, гладкий срез. Не всегда такой требуется. Часто надо отрезать и отрезанное приварить к другой детали. В таких ситуациях УШМ будет хватать вполне. Но с болгаркой при этом есть несколько “но”, они связаны с техникой безопасности.

Даже профессионалы предупреждают: болгарку можно назвать капризным инструментом.

С болгаркой три опасных момента: 1) даже защитные очки могут не защитить от летящих стружек, 2) с самими болгарками обычно ничего не случается – случается с режущими дисками, которые часто имеют привычку клинить, рваться на куски и разлетаться, 3) во внештатных ситуациях с дисками болгарку трудно удержать.

То есть, даже при бытовой резке металла часто есть смысл рекомендовать более надежное и технологичное оборудование, чем обычная УШМ. Пока не касаясь других особенностей, которые имеетручная плазменная резка металла, отметим, что в плане безопасности “плазма” несравненно лучше по отношению резки болгаркой. И шлаков нет, и среду не загрязняет, и безопасно. Вопрос стоит тогда, как вы понимаете, только в цене.

А если газовым резаком?

Газокислородной резкой резать металл будет, пожалуй, побыстрее. Но вопрос по качеству реза остается: и рез от болгарки, и рез после газовой резки – это черновые резы, их надо обрабатывать. А это время, а время – это деньги.

Газовым резаком и болгаркой можно резать металл в качестве подготовительной обработки – с тем, чтобы заготовку потом зачищать. При газосварке, конечно, возникают свои проблемные вопросы. Главный из них – деформация металла, с чем вообще связана термическая обработка металлических изделий. Газовая резка – это и окислы, и окалина.

Можно, конечно, подобрать такие характеристики газовой резки, что окислов и окалины будет меньше, но целиком от них избавиться невозможно. Они сопутствуют газовой резке неизбежно. Кроме того, не всегда есть желание хранить газовые баллоны, тем более что их два – один с кислородом (режущий газ), второй с другим горючим газом.

Хранение газобаллонов существенно повышает ступень опасности при использовании кислородной резки металла.

Хорошо, какие еще есть способы?

Остальные способы резки металла (далее мы назовем их три) отличаются следующими характеристиками: 1) оборудование для них более дорогое, 2) они не в последнюю очередь рассчитаны на серийную резку, или по крайней мере резку больших объемов, 3) отличаются высокой точностью.

Таким образом, другие способы резки, кроме кислородного и механического, будут для вас актуальны, если: А) надо точность реза и чтобы рез был качественным, Б) если объемы металлорезки будут все же побольше, чем “дачно-бытовые”. А также: В) если есть некоторый бюджет на приобретение такого резочного оборудования.

Итак, резать металл также можно:

• лазерной резкой (режет лазерный луч); • гидроабразивной (струя воды с добавленным абразивным материалом); • плазменной (принцип плазменной резки: режет плазмой – ионизированным газом). Если вы дошли до этого места в тексте, значит, для вас действительно важно выбрать способ резки металла, который обеспечивал бы качественный рез и высокую скорость. Ниже – информация о том, чем различаются три названные способы, а также: • какой способ более дорог, а какие – более дешев; • какие металлы можно резать одним способом, и нельзя – другим.

Продолжаем сравнивать

Скорость. Плазменная более продуктивная (технология плазменной резки – одна из наиболее передовых). Плазма режет и быстрее лазера (хотя тут есть нюансы), и однозначно быстрее водноабразивной резки.

Это существенная характеристика, и по этой характеристике воздушно-плазменная выигрывает однозначно, настолько выразительно преимущество по скорости резки. А скорость – это значит, какие объемы металла вы сможете разрезать за единицу времени.

Если объемы большие – плазменная резка очевидно лучше.

Металлы. Лазерная хороша, если надо раскроить металл фигурно, но подойдет лазер не для всех металлов. Например, плохо идет с лазерной резкой раскрой нержавеющей стали и алюминия (потом что это отражающие металлы, ни плохо соотносятся с воздействием лазера).

Водноабразивная металлорезка также имеет свои ограничения на работу с рядом металлом – например, водой нельзя резать ржавеющие металлы. Отметим, что ручная плазменная резка металлане ограничена названными для лазера и водоабразива ограничениями. Цена. Оборудование для лазерной резки – дорогое.

Оно и понятно, поскольку главным образом резка лазером – для фигурных вырезов, которые очевидно более специфичны. Оборудование для водно-абразивной резки – также из дорогого ценового сегмента. Плазмотроны – значительно дешевле и лазерного, и водноабразивного резочного оборудования.

То есть, и здесь технология плазменной резки, как оказывается, имеет свои плюсы.

Плазменная резка – это…

• Это большая скорость по сравнению с большинством способом резки металла. • Это возможность резать и черные металлы, и цветные – различается тогда только используемый газ: активные газы (кислород или сжатый обычный воздух) для первых и аргон, водород или азот – для вторых. • Это высокая точность, а также возможность вырезать сложную форму или нестандартное по форме отверстие (прямой конкурент лазерной резки). • Это щадящий режим в отношении металлической заготовки:технология плазменной резки подразумевает, что деталь не деформируется вследствие термического воздействия. • Да, это оборудование, которое стоит дороже, чем болгарка или переносной газосварочный пост, но оно того стоит. • Это способ, у которого принцип плазменной резки – обжатие газом дуги и ионизация дугой газа.

Резать плазмой надо так

Металлорезка плазменным способом – это высокотехнологичный процесс. А это подразумевает учет ряда моментов, которые обуславливают продуктивное течение процесса резки. Что это за моменты? • Выбор плазмотрона надо начинать, обращая внимание на такой показатель, как Продолжительность включения. Она может быть и 20%, и 80%.

ПВ измеряется в процентах и показывает, какой процент времени аппарат способен работать в непрерывном режиме (20% – 1 мин. из 5-ти, 80% – 4 мин. из 5-ти). Не рекомендуется эксплуатировать плазмотрон (как и любое электрооборудование) на максимуме, следует оставить “дельту”, чтобы не вывести аппарат из строя.

• Учитывайте возможность приобретения расходников: насколько они доступны, где можно покупать, сколько стоят, какие расходные материалы качественные. “Расходников” для плазмотронов – не так много, в первую очередь это сопла (разного диаметра) и катоды. Использование хороших расходников может существенно повлиять на конечную цену плазморезки.

Технология плазменной резки подразумевает использование качественных расходников. • Для плазменной резки потребуется газ, поскольку таков принцип плазменной резки. Газом может быть или обычный сжатый воздух, или более специфичные газы (аргон, водород и др.). Подбор газа зависит от того, какое термическое воздействие нужно и на какой металл.

Кроме того, не забывайте: если плазмой будете резать при холодных погодных условиях, обеспечьте воздухоподготовку в зимних условиях.

Резюмируем

Ручная плазменная резка металла имеет ряд преимуществ. Более подробно они описаны выше, здесь только по пунктам. • Плазморезка – более быстрая, позволяет резать большие объемы металла, экономит ваши деньги на скорости и объемах. • Режет те металлы, с которыми ряд других способов резки не справляется (и черные, и цветные), стоит только поменять газ.

• Оборудование кажется дорогим только если сравнивать с ценой болгарки или газосварочного поста, а сравнивая с другими, такими же точными способами, цена не кажется уже такой высокой. • По точности соперничает с лазерной, но не имеет ограничений по толщине (как у лазерной) и стоит заметно меньше.

• Не деформирует металлическую заготовку, термическое воздействие осуществляется только в области реза, не возникает ни окислов, ни окалины. Выбирая оборудование для металлорезки, возможно, вам может даже понадобится использование разных резочных способов. Каждый из них ориентирован на свои задачи и вполне может сочетаться с другими.

В одном случае надо черновая резка, в другом – точная и более быстрая. В этом тексте мы попытались дать максимально полную картину по способам резки металла, а также показать, какие бесспорные плюсы есть у воздушно-плазменного способа резки.

Делайте свой выбор осознанно и опираясь на знания!

Специалисты компании Земля Сварщиков с радостью помогут выбрать максимально соответствующий вашим запросам аппарат для плазменной резки, способный решить поставленные задачи с высочайшей эффективностью.

Источник: http://svarkaland.ru/ctati/plazmennaya-rezka-i-ee-osobennosti

Плазменная резка металла – особенности и преимущества работы

С необходимостью раскроя металлических изделий постоянно сталкиваются в машиностроении, строительстве, коммунальных хозяйствах, творческих мастерских. Чтобы разрезать материал, применяются различные методы.

Принцип работы плазменной резки металла и область применения данного метода, позволяют ему пользоваться популярностью при изготовлении металлических конструкций и изделий на предприятиях, в частных хозяйствах.

Виды резки при помощи плазмы

Плазменно-дуговой раскрой осуществляется двумя методами.

Ручной раскрой

В данном случае нарезание металлов плазмой проводится при использовании портативных непромышленных плазморезов, имеющих в составе:

  • основной агрегат с трансформатором и выпрямительной подстанцией;
  • силовой питающий кабель;
  • воздушный шланг и кабель для подсоединения резака;
  • плазменный пистолет.

Принцип плазменно-дуговой резки

Ручной плазменный агрегат немного весит (до 25 кг), работает от сети 220 В, универсален, доступен в продаже и стоит недорого.

Автоматический раскрой

Совместив технологию раскроя плазменным резаком с ЧПУ, получилось добиться высокой точности, качества и скорости реза. Агрегаты обладают большой мощностью, работают от сети постоянного тока – 380 В, в состоянии разрезать металл, имеющий толщину до 6 см.

Станок с ЧПУ для резки металла

Как работает плазмотрон

В качестве режущего инструмента в аппаратах используется струя плазмы.

Процесс резки металлических изделий:

  1. От источника электрического питания ток по кабелю подается на горелку, где происходит образование электродуги между анодом и катодом.
  2. Компрессор подает потоки газа, которые завихрителями направляются к электрической дуге.
  3. При прохождении потоков через дугу происходит ионизация газа и разогрев до высокой температуры (до 30 тыс. градусов).
  4. Газ превращается в плазменную струю.
  5. При воздействии разогретого воздуха, выходящего под большим давлением, металл разрезается.

Основные технологические аспекты

Работая с плазморезом, разрезающим металл, нужно учитывать многие нюансы, что обычно приходит с опытом, а именно:

Резка металла плазморезом

  • следует обеспечить приток воздуха, которым охлаждается плазменный резак;
  • подаваемый для резки газ не должен содержать частиц воды или масла, что может привести к поломке оборудования;
  • заготовка должна быть очищена предварительно;
  • для получения качественного реза следует правильно выставлять силу тока и давление газа;
  • плазменный резак нужно вести со скоростью от 0,2 до 2 м/мин (она зависит от того, какой металл необходимо разрезать и от силы тока).
  • сопло при плазменной резке металлов необходимо держать перпендикулярно заготовке (оптимальное расстояние между ними: 1,6-3 мм).

Рекомендации профессионалов

Схема подключения плазмотрона к трансформатору

Перед началом работы необходимо продуть пистолет при помощи газа. Для этого, нажав на соответствующую кнопку, на 30 секунд включается режим продувки плазмотрона. Это позволяет удалить из пистолета конденсат и различные загрязнения.

При разрезании материала электродуга может погаснуть. Эта проблема может быть вызвана износом электрода, недостаточной скоростью ведения пистолета и неверно выбранным расстоянием между соплом и заготовкой.

Для работы применяются агрегаты, предназначенные для разрезания изделий с упором резака на заготовку. В этом случае отпадает необходимость в соблюдении оптимального расстояния между ними. Но большинство плазмотронов рассчитаны на проведение работ с поддержанием некоторого зазора между соплом и металлом. Если есть трудности в обеспечении требуемого расстояния, можно подложить опору.

Качество реза во многом определяется состоянием сопла и электрода, которые являются расходными материалами. За их износом требуется следить и проводить своевременную замену, иначе невозможно получить стабильную электрическую дугу, на металле образуются наплывы и шлак.

Резка металла портативным плазморезом

Важным моментом при проведении работ является соблюдение правил техники безопасности. Специальная экипировка, включающая плотную одежду, защитные очки, маску и перчатки, позволят уберечься от вредных паров, высоких температур и излучения.

Виды применяемых газов

С помощью плазмотрона можно резать любой металл. Разница заключается в разновидности используемого при этом газа.

Плазменная резка металла при помощи воздуха

Использование воздуха для образования плазмы позволяет работать практически с любыми металлическими заготовками: из черной и нержавеющей стали, меди, латуни и др.

Этот способ относится к наиболее бюджетным. На воздушно-плазменном методе устроено довольно примитивное оборудование, которое может использоваться, в том числе, и в частных хозяйствах.

Качество и скорость реза – среднего уровня.

Технология плазменной резки

Кислородная резка

В профессиональном оборудовании применяется чистый кислород. Такие устройства позволяют добиться хорошего качества шва с небольшим слоем облоя, перпендикулярности реза и высокой скорости.

Резка защитными газами

Дорогое современное оборудование для плазменной резки металла работает на кислороде, аргоне, азоте и воздухе. Стоимость плазмотронов может превышать 10 миллионов рублей. Качество обработки изделий максимально приближено к тому, которого позволяет добиться лазерная резка.

Метод раскроя обеспечивает:

  • скорость, составляющую от 2,5 до 10 м/мин;
  • толщину струи, которая варьируется от 0,5 до 2 мм;
  • толщину обрабатываемого изделия, находящуюся в пределах от 0,5 до 60 мм;
  • давление газа, имеющее значение от 5 до 12 атм.;
  • значение тока, которое находится в диапазоне от 20 до 800 А.

Плазменная резка металла – плюсы и минусы

Резка при помощи плазмы имеет конкурентов в виде трех аналогичных вариантов обработки заготовок: лазерного, гидроабразивного и газокислородного метода. Все они характеризуются определенными положительными и отрицательными аспектами применения.

Достоинства плазменно-дугового метода

Преимущества резки плазмой:

  • Способ – универсален, с его помощью можно обрабатывать любой металл, правильно подобрав режим.
  • При обработке не перегревается сам металл (перегрев пагубно сказывается на его характеристиках, а также увеличивает продолжительность процесса).
  • Ширина реза небольшая, его качество позволяет в ряде случаев не прибегать к дальнейшей обработке шва.
  • Не загрязняется окружающая среда.
  • Метод отличает хорошая производительность: с его помощью можно разрезать металл толщиной до 6 см.
  • Отсутствие необходимости в применении газовых баллонов позволяет обеспечить безопасность рабочего процесса.

Недостатки, которыми обладает плазменный способ

Наряду с многочисленными преимуществами использования плазменной резки металла, присутствуют и некоторые отрицательные моменты:

  • Здоровью человека может быть нанесен вред из-за высокого уровня шума при работе, применение азота может привести к отравлению.
  • Плазменный агрегат имеет достаточно сложную конструкцию и высокую стоимость.
  • Расходные материалы, к которым относятся сопло и электроды, тоже стоят недешево.

Научившись работать с плазмотроном, можно выполнять как несложные работы по разрезанию листовых и трубных материалов, так и фигурную резку, нарезание отверстий.

Видео по теме: Аппарат плазменной резки — плазморез

Источник: https://VtorExpo.ru/rezka-metalla/plazmennaya.html

Параметры плазменной резки

Существуют определенные параметры, определяющие процесс плазменной резки. На него влияют многие факторы, в том числе факельный зазор (зазор межу листом и соплом), состав плазмообразующего газа, скорость перемещения резака, сила тока дуги. Причем одни из них напрямую зависят от других.

Плазмообразующий газ

Считается, что в ручной плазморезке наиболее эффективно в качестве плазмообразующего газа использовать обычный воздух.

И это отлично – ведь что может быть доступнее и дешевле? Вот только воздушная смесь хорошо зарекомендовала себя при раскрое листов толщиной до 25 мм. Причем использование воздуха приводит к азотированию кромки.

Такое явление наблюдается при насыщении кромки реза входящим, в состав воздуха, оксида азота.

При автоматической плазменной резке, как правило, применяют двойной газ. Листы толщиной +/-25 мм раскраивают с помощью водяного тумана (дополнительного газа) и азота (основного).

К сожалению, на более тонких листах водяной пар достаточно интенсивно охлаждает рез. При этом не обеспечивается прогрев близлежащих участков металла.

В результате на нижней поверхности образуется шлак, а кромка получается слишком грубой.

Для предотвращения такого дефекта уменьшают скорость резания или (и) увеличивают силу тока.

Для раскроя листов толще, чем 25 мм, большинство производителей плазменных резок рекомендуют использовать водород или аргон в качестве основного газа, а двуокись углерода или азот – как дополнительный. Применение водородно-азотистой смеси приводит к минимизации нитрирующего эффекта.

Углекислый газ значительно дороже азота. Но он незаменим, когда необходимо получить чистые кромки и максимально уменьшить вредные испарения, сопровождающие процесс резки металла.

Следует отметить, что процесс раскроя стальных листов зависит не только от выбора плазмообразующих газов. Важное значение здесь играет оптимальное давление, под которым находится газ. От этого параметра зависит срок службы сопла и качество реза.

Так, если давление повышено, в начале процесса не удается получить качественной кромки. При пониженном же давлении наблюдается недостаточное охлаждение плазмотрона. А это приводит к раздвоению дуги и разрушению сопла. В таблице ниже показано, как действуют различные газы на процесс резания металлов:

Наименование газа Вид обрабатываемого металла Достоинства Недостатки
Воздух
  • Нержавеющая сталь
  • Углеродистые стали
  • Удобно резать
  • Доступная стоимость
  • Идеальный рез
  • Нитрирование кромок
  • Окисление поверхности
  • Быстрое выгорание электрода
Азот, N2
  • Углеродистые стали
  • Алюминий
  • Нержавейка
  • Большой ресурс электрода
  • Легко режутся оба металла
Водород-аргон, Ar-H2
  • Качественный рез для листов, толще 12,7 мм
  • Дороговизна, не применяется для углеродистых сталей
Кислород, О2
  • Рез чист
  • Нитрирование кромок отсутствует
  • Наибольшая скорость резания

Ток дуги

От этого параметра напрямую зависит толщина раскраиваемого металла и срок эксплуатации сопла и электродов. Каждый комплект сопло-электрод имеет свое значение номинального тока. При резке металла на плазменной установке допустимый ток дуги составляет до 95% от номинального. Увеличивая ток дуги, необходимо синхронно увеличивать размер выходного диаметра сопла.

Факельный зазор

От данного параметра зависит:

  • перпендикулярность образуемыхкромок;
  • плотность плазменной дуги;
  • ее устойчивость.

Чем меньше факельный зазор, тем меньше угол кромки. Оптимальным считается расстояние от сопла до листа в диапазоне от 1,5 до 10 мм. Данное расстояние выставляется индивидуально для каждого случая и указывается

в руководстве по эксплуатации источника плазмы.

Чтобы избежать кромочных дефектов, необходимо выдерживать постоянным факельный зазор. Уменьшение его величины приведет к преждевременному сгорания и электрода, и дорогостоящего сопла.

Особенно опасным является контакт сопла и листа, когда факельный зазор равен нулю. Чтобы избежать разрушения сопла по этой причине,
плазменные установки, выпускаемые компанией «ТеплоВентМаш», оборудованы датчиками контроля высоты.

Такие стабилизаторы позволяют автоматически поддерживать оптимальный, заданный оператором, факельный зазор.

Скорость плазменной резки

Именно скорость перемещения резака определяет качество реза. От нее зависит присутствие шлака под листом и на сложность его удаления. Если скорость невелика, возникнет перерасход плазмообразующего газа. А на нижней части листа появится легко удаляемый «низкоростный» шлак.

При повышенной скорости перемещения сопла линия реза становится волнистой. На нижней же части листа появляется плохо отделимый «высокорослый» шлак.

Идеальной скоростью резания листового металла считается такое перемещение резака, при котором угол отставания между прорезанием верхней и нижней кромок не превышает 5 градусов.

Угол наклона кромок и ширина реза

определяет четыре главнейших параметра, влияющих на качество раскроя листового металла. К ним относятся:

  • линейное отклонение;
  • неперпендикулярность торцовойповерхности;
  • её шероховатость;
  • зона термического воздействия.

На точность и качество реза определяющее влияние оказывает угол наклона кромок и ширина реза. А вот форма кромок и размеры реза зависят от тока и напряжения дуги, скорости перемещения плазмотрона и расхода плазмообразующего газа.

На ширину реза влияют ток дуги и размер выходного отверстия в сопле. Стоит хоть немного увеличить эти параметры, как тут же ширина реза увеличится. Чтобы оценить ширину шва, можно увеличить диаметр выходного отверстия в сопле в 1,5 раза.

Для получения точных размеров вырезаемых заготовок, необходимо сдвинуть плазмотрон «в металл» на полуширину реза. Если
купить станок плазменной резки с ЧПУ, это произойдет автоматически. В нашем оборудовании встроены специальные корректоры (или компенсаторы реза). Они устанавливают эквидистантную траекторию перемещения инструмента.

Вырезаемая деталь будет меньше положенного (если рез широк) из-за частичного разрушения электрода, повышенного тока дуги, завышенного факельного зазора, низкой скорости резки или уменьшенный расхода плазмообразующего газа.

Причиной узкого реза (и, соответственно, больших размеров заготовки) являются малый факельный зазор, пониженная дуга тока, перерасход плазмообразующего газа и завышенная скорость перемещения резака.

Углом наклона кромок считают угол, образованный перпендикуляром к поверхности листа и обработанной плоскостью. Если подвод плазмообразующего газа тангенциальный, правая и левая кромки реза отличаются углами наклона.

Закручивание газового потока по часовой стрелке приводит к тому, что, по ходу движения плазмотрона угол правой кромки составит от 1 до 3 градусов, а левой – от 3 до 8.

Если угол кромки превышает 5 градусов, следует пересмотреть параметры резки.

Источник: https://plazma-stanok.ru/parametry-plazmennoy-rezki/

Особенности плазменной резки

Особенности плазменной резки, занимает особое место среди многообразия способов/методов заготовительного раскроя металла. От других методов ее отличает режущий инструмент, который представляет собой плазменную струю.

В основе этого метода находиться следующий принцип: между форсункой и металлом проходит электрический импульс, заставляющий активные (кислород и воздух), а так же неактивные (аргон, водород, азот) газы вступать в реакцию.

Особенности плазменной резки металла – это универсальный вид обработки различных металлов, ведь ее можно использовать практически для любого типа металлов: цветного, черного, тугоплавкого и т.д.

Так же, в особенности резки металла, входит и максимальная толщина разрезаемого металлического материала может достигать двухсот миллиметров. Хотя могут обрабатываться даже чугун и нержавеющая сталь толщиной до 500 мм.

Но производительность в таких случаях будет весьма низкой.

Стоит отметить, что в особенности плазменной резки, особенно эффективна для работы с цветными металлами, в частности с алюминием, учитывая его небольшую толщину и низкую электропроводность.

Установки в особенности плазменной резки, могут быть двух видов: портальные и портативные. Портативные установки могут работать в полевых условиях.

Так как плазменная резка не требует больших трудозатрат и даже сварочной ванны, то работа на подобной установке совершенно безопасна.

Портальные установки представляют собой стационарные аппараты, работать на которых можно с металлами разных толщин и размеров

Другие особенности плазменной резки металлов,  отличается довольно высокой производительностью, хорошим качеством получаемого материала и при всем этом низкой ценой.

  Эти виды и особенности плазменной резки металлов реализуется при помощи генераторов плазмы, которые обладают весьма и весьма высокой сопротивляемостью к изнашиванию.

Это позволяет не производить их замену долгое время, получая при этом качественный результат.

По сравнению с другими методами раскроя (лазерным, кислородным, гидроабразивным), особенности плазменной резки, имеет большое количество преимуществ. К ним относится и высокая скорость работы, и меньшие трудо- и энергозатраты, высокая производительность, низкий уровень загрязнения атмосферы, качество обработанного металла.

И совсем неудивительно, что при этих утвердительных качествах – плазменная резка обрела широкое распространение и популярность во многих крупных предприятиях. Стоит подчеркнуть, что качество плазменной резки напрямую зависит от качества оборудования и его комплектующих деталей.

Источник: https://interlaser.ru/plazmennaya-rezka-metalla/344-osobennosti-plazmennoj-rezki

Ссылка на основную публикацию
Adblock
detector