Устройство и принцип работы симистора

Разбираемся в характерных особенностях симисторов, их устройстве и принципе работы

Симистор – прибор, имеющий пять p-n переходов. Изобретен он был в Советском Союзе на Саранском заводе еще в 60-х годах прошлого столетия.

Его работа подобна функционированию тиристора, откуда и взялось название симистор (в иностранной литературе – триак), что означает симметричный тиристор.

Обозначение элемента на схемах представляет собой два включенных навстречу друг другу диода.

Принцип действия симистора

Особенность симистора, по сравнению с тиристором, состоит в том, что этот прибор проводит электрический ток в двух направлениях. Благодаря этому свойству такой элемент с успехом используется в цепях переменного тока. Если посмотреть на вольтамперную характеристику симисторов, то можно увидеть, что она симметрична относительно оси тока.

Поэтому устройство симистора не предусматривает использование анода и катода в своих схемах. Там устроены:

  • силовой электрод 1 (МТ1);
  • силовой электрод 2 (МТ2);
  • управляющий электрод (G).

Для определенности предположим, что на управляющий электрод подано отрицательное относительно МТ1 напряжение. Если этот показатель больше соответствующей величины включения симистора и на силовой электрод подается напряжение, достаточное для протекания в приборе тока, превышающего ток удержания симистора, то через прибор проходит электричество.

Закрывается тиристор после того, как напряжение на силовом электроде упадет до величины, при которой ток прибора уменьшится до тока удержания.

При подаче на силовой электрод переменного напряжения это происходит обычно при изменении полярности подаваемого напряжения.

Для рассмотренного режима возможны четыре варианта подачи напряжения на силовой (МТ2) и управляющий электроды симистора. Первый и второй варианты предполагают подачу на МТ2 положительного, а на G – отрицательного или положительного напряжения.

Третий и четвертый варианты предполагают подачу на МТ2 отрицательного напряжения, а на электрод G – соответственно отрицательного или положительного.

При этом 1, 2 и 3 варианты являются для симистора рабочими, а четвертый – запрещенным.

При работе в этом режиме элемент может выйти из строя. Поэтому используются различные методы защиты от случайного выхода симистора в этот режим.

Плюсы и минусы в использовании

Симисторы обладают следующими достоинствами:

  • относительно небольшая стоимость прибора;
  • увеличенный срок службы;
  • отсутствие механических контактов.

При использовании симисторов в релейных схемах благодаря отсутствию механических контактов не бывает искрения, являющегося источником радиопомех.

Недостатки прибора:

  • для защиты от перегрева прибора необходимо использовать радиатор;
  • чувствительность к переходным процессам;
  • не работает на больших частотах;
  • чувствителен к помехам и шумам.

Особенностью симистора является то, что падение напряжения на приборе в открытом состоянии не зависит от протекающего тока и составляет около 2 В.

При больших токах переключения (около 40 А) мощность рассеивания на приборе будет равна около 80 Вт.

Поэтому без теплоотвода симисторы могут быть использованы только при малых нагрузках. В противном случае необходимо использовать радиатор. При этом наилучшим способом крепления симистора к радиатору является крепление с помощью винта.

При высокой скорости изменения переключаемого симистором напряжения может возникать эффект самопроизвольного включения прибора без наличия управляющего напряжения. Это может привести к разрушению устройства.

Причиной резкого повышения скорости изменения напряжения может быть появление помехи или выбросы напряжения при работе с нагрузкой, имеющей индуктивный характер. Для предотвращения разрушения симистора в таких случаях рекомендуется включение шунтирующей RC цепочки.

В некоторых цепях возможно появление электрических помех и шумов. Если напряжение этих шумов на затворе достигнет значения включения, то симистор может сработать в неподходящий момент.

Для предотвращения этого рекомендуется уменьшить длину проводов, ведущих к затвору или заменить их экранированным кабелем.

Кроме того, для уменьшения влияния шумов между затвором и электродом МТ1 можно включить резистор величиной в 1 кОм.

Особенности задействования в технике

Благодаря своим параметрам симисторы могут быть использованы в различных областях бытовой техники и промышленности. Например:

  • приборы для регулировки освещения (диммеры — что это, мы ранее рассматривали);
  • электроинструмент для строительства (дрели, перфораторы и т. п.);
  • электронагревательные приборы (печи, духовки);
  • холодильники, кондиционеры (компрессоры);
  • пылесосы, вентиляторы, фены, стиральные машины и т.п.

В промышленности симисторы используются для регулировки осветительными и нагревательными приборами, а также для управления электродвигателями.

Выводы:

  1. Симистор – полупроводниковый прибор, имеющий пять p-n переходов.
  2. Этот прибор предназначен для коммутации мощных электрических цепей и с успехом заменяет электромеханические реле.
  3. Прибор широко используется в блоках бытовой техники и в промышленности.

Принцип работы симистора на видео

Источник: http://elektrik24.net/elektrooborudovanie/simistory/princip-raboty-5.html

Как работает симистор: принцип действия, плюсы и минусы, применение прибора

Симистором называется прибор, разработанный ещё в СССР на электрозаводе города Саранска. Он имеет 5 р-n переходов.

  • Принцип действия
  • Плюсы и минусы использования
  • Применение симистора

История его создания приходится на 1960-е годы, на то время, когда Мордовский институт заполнил патент на это изобретение.

О том, как работает симистор, знают немногие. Его функционирование напоминает работу тиристора.

Принцип действия

Пожалуй, основное отличие симистора от тиристора заключается в том, что первый прибор может пропускать ток в двух направлениях, из-за чего он нашёл своё применение в электроцепях переменного тока.

В симисторе отсутствует катод и анод. Этот факт подтверждается при изучении вольт-амперной характеристики прибора.

Также можно заметить, что он имеет симметрию с осью тока. В его схеме присутствует два силовых электрода (МТ1 и МТ2) и управляющий электрод (G).

Если на второй показатель подать напряжение со знаком минус, и его показатель окажется выше заданной величины срабатывания симистора, и одновременно на силовой электрод подать напряжение, достаточное для протекания в приборе тока, превышающего ток удержания симистора, то он будет пропускать электричество.

Основным достоинством схем регуляторов мощности на приборе является наличие хорошей двусторонней связи, следовательно, появляется уникальная возможность её изменения непосредственно в период работы устройства.

Такие схемы часто используются для регулирования света при использовании всем известных ламп накаливания. Для их реализации применяются

  • тиристор;
  • динистор;
  • симистор.

Для такого режима работы можно использовать 4 способа для подачи напряжения на МТ2 и G (управляющий электрод).

Два первых варианта требуют подать напряжение со знаком плюс на силовой электрод (МT2) и отрицательное или положительное на управляющий электрод.

Последующие два варианта требуют подать на силовой электрод (МT2) напряжение со знаком минус и положительное или отрицательное на управляющий электрод.

Плюсы и минусы использования

У симистора в принципе работы можно выделить ряд достоинств. Главными его преимуществами являются:

  • низкая стоимость;
  • повышенный срок эксплуатации.

Из-за отсутствия каких-либо механических контактов прибор не искрит, что повышает безопасность его применения, кроме того, отсутствуют радиопомехи при его работе.

К минусам аппарата обычно относят его сильный перегрев при отсутствии радиаторов охлаждения. Поэтому прибор следует использовать лишь при незначительных нагрузках на него или же установить радиатор охлаждения.

В качестве примера можно привести компьютерный блок бесперебойного питания. Суть его работы заключается в том, что ток сети преобразовывается из постоянного в переменный. При отключении этого блока симистор начинает брать накопившееся электричество из своего встроенного аккумулятора.

Огромное значение для персонального компьютера играет и блок электропитания в целом. При резком переключении напряжения может произойти самовольное включение симистора при отсутствии управляющего напряжения. Всё это может его повредить. Всему виной возникновение помехи или выбросы напряжения при работе с нагрузкой.

Чтобы не дать симистору сломаться, следует включить шунтирующую RC цепочку. Однако в определённых цепях могут возникнуть электрические помехи и шумы. Если они достигнут значения включения, то прибор включится не в то время. Чтобы этого не произошло, следует укоротить провода, которые ведут к затвору, или же использовать экранированный кабель.

Применение симистора

Из-за своих уникальных характеристик, простоты устройства и небольшой стоимости симистор успешно применяется как в быту, так и в промышленности, в следующих видах техники:

  • печи;
  • духовки;
  • регуляторы освещения;
  • дрели;
  • перфораторы.

Практически в каждом электроприборе, имеющемся в доме, найдётся симистор.

В промышленной сфере приборы применяются при регулировке света, кроме того, с их помощью регулируются электроприборы и электродвигатели.

Симистор легко сможет заменить электромеханические реле, так как он намного более долговечен и надёжен. Аппарат очень хорошо зарекомендовал себя на рынке и, несмотря на бурно развивающуюся электронику, до сих пор пользуется большим спросом, так как нашёл широкое применение не только в домашней технике, но и в промышленности.

Источник: https://220v.guru/elementy-elektriki/kak-rabotaet-simistor-plyusy-i-minusy-primeneniya.html

Применение тиристора и симистора: принцип работы и способы управления

Тиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехнику, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод положительный вывод;
  • катод отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Основное применение этого типа элементов это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность.

При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал.

Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен.

Цепь с конденсатором подключается к схеме управления тиристором.

При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится.

Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится.

Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

  • Максимально допустимый прямой ток наибольшая возможная величина тока открытого элемента;
  • Максимально допустимый обратный ток — ток при максимальном обратном напряжении;
  • Прямое напряжение — падение величины напряжения при максимальном токе;
  • Обратное напряжение наибольшая допустимая величина напряжения в закрытом состоянии;
  • Напряжение включения наименьшее напряжение при котором сохраняется работоспособность электронного устройства;
  • Минимальный и максимальный ток управляющего электрода;
  • Максимально допустимая рассеиваемая мощность.
Читайте также:  Металлическая медь: описание элемента, свойства и применение

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока.

Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Хотелось бы более подробно остановиться на симисторах.

Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения.

Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2.

Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод.

Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Источник: https://elektro.guru/osnovy-elektrotehniki/tiristor-dlya-chaynikov-shema-vklyucheniya-i-sposobyi-upravleniya.html

Тиристоры. Виды и устройство. Работа и применение. Особенности

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока.

Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно.

И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике.

И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения.

На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров

• Максимально допустимый прямой ток. Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.

• Максимально допустимый обратный ток.
• Прямое напряжение. Это падение напряжения при максимальном токе.
• Обратное напряжение. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.

• Напряжение включения. Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
• Минимальный ток управляющего электрода. Он необходим для включения тиристора.
• Максимально допустимый ток управления.

• Максимально допустимая рассеиваемая мощность.

Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

Различают несколько разновидностей тиристоров. Рассмотрим их классификацию

По способу управления разделяют на:

  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.

Триодные тиристоры в свою очередь разделяются:

  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.

Запирание тиристора производится:

  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.

По обратной проводимости тиристоры делятся:

  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность.

Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя.

На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление.

И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма.

Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации.

Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

• Полупроводниковый диод VD. • Переменный резистор R1. • Постоянный резистор R2. • Конденсатор С.

• Тиристор VS.

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/tiristory/

Симисторные регуляторы мощности своими руками – схема, как работает и сборка

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором.

Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Там их с успехом заменяют схемы на тиристорах и IGBT-транзисторах.

Но компактные размеры прибора и его долговечность в сочетании с невысокой стоимостью и простотой схемы управления позволили найти им применение в сферах, где указанные выше недостатки не имеют существенного значения.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

Принцип работы

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Отличительной особенностью схемы является то, что динистор открывается на одинаковый угол в каждой полуволне сетевого напряжения. Вследствие этого не происходит выпрямление тока, и становится возможным подключение индуктивной нагрузки, например, трансформатора.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).
Читайте также:  Шуруповерт: особенности конструкции и способы ремонта своими руками

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

Схема симисторного регулятора мощности

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.

Симисторный радиатор мощности

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

Блиц-советы

  • продлить срок службы лампы, регулировать освещение или температуру паяльника поможет простой и недорогой регулятор на симисторах.
  • выбирайте тип схемы и параметры компонентов по планируемой нагрузке.
  • тщательно проработайте схемные решения.
  • будьте внимательны при сборке схемы, соблюдайте полярность полупроводниковых компонентов.
  • не забывайте, что электрический ток есть во всех элементах схемы и он смертельно опасен для человека.

Источник: http://orcmaster.com/electro/stabilizator/simistornye-regulyatory-moshhnosti.html

Симистор принцип работы при коммутации

Существует множество полупроводниковых приборов, применяющихся в электрических цепях и осуществляющих коммутацию.

Среди них следует особо отметить симистор, принцип работы которого практически такой же, как и у тиристора.

В области электроники симистор, по своей сути, представляет ключ, в конструкции которого содержится анод и катод. Фактически, это два тиристора, подключаемые между собой встречно и параллельно.

Как работает симистор

Когда на катод подается положительное напряжение, поступление тока производится через тиристор, расположенный с левой стороны. Если поток напряжения становится противоположным, начинается работа правого тиристора. Отпирающий сигнал и его направление регулируется с помощью специального полупроводникового слоя. Таким образом, симистор обладает лучшими качествами тиристоров.

Его полупроводники работают попеременно, когда изменяется фаза электротока. Это устройство является универсальным и применяется в цепях с постоянным и переменным током.

Включение симистора осуществляется под действием возрастающей амплитуды напряжения. Когда напряжение снижается, происходит выключение устройства. Благодаря этим свойствам, регулируется нагрузка, степень накаливания и температура в различных приборах освещения и нагрева.

Положительные качества симисторов

Для управления симисторами используются токи различной полярности в четырех режимах работы. Поэтому, нередко симистор используется, как реле или электронный выключатель.

Симистор отличается длительным сроком эксплуатации, низкой стоимостью. В нем отсутствуют излишние звуки и любые ненужные контакты. Однако, данный прибор обладает повышенной чувствительностью к перегреву.

При токах с высокой частотой иногда наблюдаются отказы в работе. Механические и электронные помехи могут привести к ложным срабатываниям.

Для их предотвращения применяются устройства, имеющие дополнительную защиту, чтобы ограничить скорость, с которой изменяется напряжение.

Существует трехквадрантный симистор, принцип работы которого позволяет избежать самопроизвольного срабатывания. В них сокращены размеры плат и количество элементов. Эти приборы могут стабильно работать даже при очень высокой частоте.

Различные виды симисторов применяются во многих областях. Они являются составной частью электронного управления в промышленной и бытовой технике. Осуществляется диммирование света, когда источники управляются на расстоянии. Это особенно актуально для уличного освещения, театральных сцен и других аналогичных объектов.

Источник: https://electric-220.ru/news/simistor_princip_raboty_pri_kommutacii/2014-04-09-574

Симистор (симметричный тиристор)

Читать все новости ➔

Большинство полупроводниковых приборов созданы на переходах или слоях (n-p, p-n). Полупроводниковый диод имеет один переход (p-n) и два слоя. У транзистора два перехода и три слоя (n-p-n, p-n-p). А если добавить ещё один слой, то получается четырёхслойный полупроводниковый прибор – тиристор. Два тиристора включенные встречно-параллельно и есть симистор (от симметричный тиристор).

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current). Вот так симистор изображается в электронных схемах:

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – “затвор”). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах. >>>

Следует однако отметить, что симистор управляется несколько по другому нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод то электроды симистора так охарактеризовать нельзя поскольку каждый электрод является и анодом и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение.

На электрод, который является управляющим с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется и ток пойдёт в нагрузку.

В тот момент, когда напряжение на входе симистора поменяет полярность он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше.

После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса.

В данном случае изменяя управляющее напряжение мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре так называемых сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор как электронный выключатель или реле то его достоинства неоспоримы:

  • Невысокая стоимость.
  • По сравнению с электромеханическими приборами большой срок службы.
  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.
  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.
  • Реагирует на внешние электромеханические помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400 V. Это означает,что он прекрасно может управлять нагрузкой в сети 220 V и ещё с запасом.
  • В импульсном режиме напряжение точно такое же.
  • Максимальный ток в открытом состоянии – 5 А.
  • Максимальный ток в импульсном режиме – 10 А.
  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.
  • Наименьший импульсный ток – 160 мА.
  • Открывающее напряжение при токе 300 мА – 2,5 V.
  • Открывающее напряжение при токе 160 мА – 5 V.
  • Время включения – 10 мкс.
  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор

Современная и перспективная разновидность симистора это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Оптосимистор MOC3033 Устройство оптосимисторов

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как “не подключайте”.

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Возможно, Вам это будет интересно:

Источник: http://meandr.org/archives/18987

Два простых способа проверки симистора

В электронных схемах различных приборов довольно часто используются полупроводниковые устройства – симисторы. Их применяют, как правило, при сборке схем регуляторов. В случае неисправности электроприбора может возникнуть необходимость проверить симистор. Как это сделать?

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор.

Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники.

Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.
  • По принципу работы эти приборы различаются на три вида.Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.

    С помощью тестера

    Проверка работоспособности симистора мультиметром или тестером основана на знании принципа работы этого устройства. Конечно же, она не даст полной картины состояния детали, так как невозможно определить рабочие характеристики симистора без сборки электрической схемы и проведения дополнительных измерений. Но часто вполне достаточно будет подтвердить или опровергнуть работоспособность полупроводникового перехода и управления им.Чтобы проверить деталь, необходимо использовать мультиметр в режиме измерения сопротивления, то есть как омметр. Контакты мультиметра присоединяются к рабочим контактам симистора, при этом значение сопротивления должно стремиться к бесконечности, то есть быть очень большим.После этого соединяется анод с управляющим электродом. Симистор должен открыться и сопротивление должно упасть почти до нуля. Если все так и произошло, скорее всего, симистор работоспособен.Устройство можно считать неисправным в двух случаях. Если до появления напряжения на контакте управляющего электрода сопротивление симистора ничтожно мало. И второй случай, если при появлении напряжения на контакте управляющего электрода сопротивление прибора не уменьшается.

    С помощью элемента питания и лампочки

    Существует вариант прозвона симистора простейшим тестером, представляющим собой разорванную однолинейную цепь с источником питания и контрольной лампой. Еще для проверки понадобится дополнительный источник питания. В качестве его может быть использован любой элемент питания, например типа АА с напряжением 1,5 В.Прозванивать деталь нужно в определенном порядке. В первую очередь необходимо соединить контакты тестера с рабочими контактами симистора. Контрольная лампа при этом гореть не должна.Затем необходимо подать напряжение между управляющим и рабочим электродами с дополнительного источника питания. На рабочий электрод подается полярность, соответствующая полярности подключенного тестера. При подключении контрольная лампа должна загореться. Если переход симистора настроен на соответствующий ток удержания, то лампа должна гореть и при отключении дополнительного источника питания от управляющего электрода до момента отключения тестера.Так как прибор должен пропускать ток в обоих направлениях, для надежности можно повторить проверку, изменив полярность подключения тестера к симистору на противоположную. Надо проверить работоспособность прибора при обратном направлении тока через полупроводниковый переход.Если до подачи напряжения на управляющий электрод контрольная лампа загорелась и продолжает гореть, то деталь неисправна. Если при подаче напряжения контрольная лампа не загорелась, симистор также считается неисправным, и использовать его в дальнейшем нецелесообразно.Соблюдая эти простейшие правила, можно произвести отбраковку некачественных или отработавших свой ресурс деталей.

Источник: https://EvoSnab.ru/instrument/test/proverka-simistora-multimetrom

Что такое симистор и как используется

Любая электроника основана на комплексе различного рода элементов, которые обеспечивают функционирование электроприборов. Симистор – один из необходимых микроприборов. Смотрите обзор видов светодиодных фитоламп для рассады растений здесь: http://howelektrik.ru/osveshhenie/lampy/svetodiodnye-fitolampy-dlya-rassady-rastenij-obzor-vidov-i-kak-vybrat.html.

На фото представлены симисторы

Что это такое?

Симистор – полупроводниковый прибор, получивший свое названия от слов СИМетричный тирИСТОР.  Изобретен в СССР, на одном из заводов, и запатентован на полгода раньше, чем в США.

Принцип работы

Принцип работы симистора основан на обеспечении проходимости электрического тока в обоих направлениях, а не в одном, как в тиристоре.

Одним из несомненных преимуществ симистора является и тот факт, что для обеспечения проходного канала не требуется наличие постоянного уровня напряжения на управляющем ключе.

Достаточно лишь наличие его не выше определенного уровня, в зависимости от применения.

Говоря о видах симисторов, следует принять тот факт, что это симистор является одним из видов тиристоров.  Когда имеются в виду различия по работе, то и тиристор можно представить своего рода разновидностью симистора. Различия касаются лишь по управляющему катоду и в разных принципах работы этих тиристоров. Читайте что такое импульсный блок питания.

Импортные симисторы широко представлены на отечественном рынке.

Их основное отличие от отечественных  симисторов заключается в том, что они не требуют предварительной настройки в самой схеме, что позволяет экономить  детали и место на печатной плате.

Как правило, они начинают работать сразу после включения в схему. Следует лишь точно подобрать необходимый симистор по всем требуемым характеристикам.

  • На замену Z00607 хорошо подходят ы BT131-600, только они максимально подходят по всем характеристикам
  • На снимке BT131-600

  • Полностью аналогичный у Z7M является МАС97А8.
  • z3m . Такой же , как и чуть выше.  Различия в токе по управляющему ключу и в максимальном напряжении. Полностью аналогичен по замене на  MAC97A8
  • ВТА 16 600 — импортный , рассчитанный на использование в цепях до 16 ампер и напряжением до 600 вольт
  • M2lZ47. Этот очень часто используется концерном Samsung в производстве бытовых приборов.  Аналогом этого полупроводника и, несомненно, более лучшим, является BT 134-800. ы m2lz47 являются не самыми надежными с точки зрения условий эксплуатации в приборах с нестабильными параметрами питающей сети.
  • m2lz47 представлен ан фото

  • тс122 25. Данный симистор очень часто называют силовым тиристором, так как он используется в электроприборах или электроинструменте в механизмах плавного пуска.  Отличительной особенность данного а является его большая надежность на протяжении большого срока работы.
  • На снимке представлен тс122 25

  • 131 6 , другое название данного а  ВТ 131-600, но есть и упрощенное  название, и на многих деталях имеется именно упрощенная маркировка. С этим моментом очень часто связано то, что по оригинальной или упрощенной маркировке не всегда можно найти именно ту информацию, которая нужна.

Схемы управления

Схемы управления симистором отличаются простотой и надежностью.

Там, где без применения симисторов требовалось большое количество деталей, и производилась тщательная подгонка по параметрам – симисторы значительно упростили всю принципиальную схему.

 Включение в схему только основных элементов позволяет миниатюризировать не только саму печатную плату, но и весь прибор в целом. Читайте принцип работы индикаторной отвертки.

Схема управления симистором на рисунке

Схема диммера на симисторе позволяет создать компактное дополнение к выключателю освещения, для плавной регулировки уровня освещения. При необходимости схему можно дополнить компонентами для плавного изменения освещения в зависимости от яркости внешнего фона.

Схема диммера на симисторе

Схема регулятора на симисторе включает в себя непосредственно сам датчик температуры, питающую сеть, и прибор нагрузки. Изменение показаний датчика температуры приводит к изменени показателей тока на ключе симистора, что приводит либо к увеличению напряжения, либо к уменьшению.

Забудьте о сложных механических устройствах с биметаллическими пластинами и выгорающих контактах. Читайте инструкцию как отмотать электросчетчик на этой странице.

Схемы управления скоростью вращения двигателя принципиально ничем не отличаются по принципу построения от других аналогичных.

Нюансы касаются только параметров тока и напряжения на двигатель.

Управление симистором через оптопару позволяет подключать электрооборудование, которым нужно управлять. Непосредственно к компьютеру через порт LPT. Оптопара в данном примере позволяет защитить непосредственно материнскую плату компьютера от перегрузки и выхода из строя.  Своего рода умны предохранитель с функцией управления.

Управление симистором через оптопару на схеме

Управление симистором с микроконтроллера позволяет добиться очень точных показателей по току и напряжению, при которых происходит управление самим симистором и распределению питающего напряжения на различные устройства нагрузки.

Схема управления симистором с микроконтроллера на рисунке

Регулятор мощности

Регулятор мощности на симисторе обычно требует включения симистора в одну из ветвей выпрямителя, чтобы путем изменения импульсов питания двигателя добиться как можно маленьких промежутков в подаче питания на двигатель, чтобы не терялась мощность на низких оборотах.

Регулятор мощности на симисторе на схеме

Схема регулятора мощности выполняется в основном на силовом синисторе, выпрямительном диодовом мостике и по возможности с применением оптопары, для защиты управляющего входа от непредвиденных  поломок с целью предотвращения распространения неисправности.

Регулятор мощности на симисторе для индуктивной нагрузки — самая интересная ветвь применения симисторов. Проблема применения симисторов на индуктивной нагрузке заключается в том, что при многих диапазонах частот при подаче управляющего импульса сам симистор просто не успевает открыться. В итоге детали сгорают, эффекта ноль.

Одна из очень немногих схем предлагает решение в посылке нескольких импульсов вместо одного.

Регулятор мощности на симисторе для индуктивной нагрузки на схеме

Использование

Симисторы применяются практически везде. Это и блоки питания, и регуляторы мощностей и напряжения в бытовых приборах, в аудио и видеотехнике, в самолето-  и автомобилестроении.

Симисторный регулятор скорости не занимает много места, практические решения по использованию симистора в регуляторах различаются только показателями регулируемой скорости. Вследствие этого используются те или иные детали.

На снимке симисторный регулятор скорости

Симисторный регулятор напряжения не занимает много места, так как в нем отсутствуют громоздкие и устаревшие морально элементы. Вдобавок, такие регуляторы напряжения не зависят от перепадов напряжения, так как имеют совершенно другой принцип работы.

Симисторный регулятор напряжения на фото

Симисторный регулятор на вентилятор позволяет, не используя мощных компонентов в системе питания, регулировать обороты вентилятора без потери функциональности и перегрева отдельных компонентов согласно классической схеме построения блока управления.  Ниже напряжение – выше частота, и обороты вентилятора стабильны и на малых и на больших значениях.

Симисторный регулятор на вентилятор изображен на фото

Как проверить?

На фото проверка исправности симистора

При подозрениях на неисправность любую деталь нужно проверить. Для каждой отдельной детали есть свои способы проверки и все они отличаются по принципу работы детали и принципу работы использующихся приборов для проверки.

Проверка исправности тиристора на снимке

Как проверить мультиметром?

Симистор проверяется следующим образом. Для этого нужно два стрелочных омметра. Один подключаем к аноду и катоду симистора, а второй присоединяем к одному из анодов одним щупом.

На первом омметрепри рабочем синисторе будет наблюдаться сопротивление, стремящееся к бесконечности, но после присоединения второго щупа к управляющему электроду произойдет отпирание ключа и на первом приборе сопротивление моментально исчезнет.

Ознакомиться с руководством как выбрать детектор скрытой проводки и как им пользоваться можно здесь.

Можно проверить симистор мультиметром не выпаивая, но управляющий электрод отсоединить все-таки нужно. При присоединении омметра к аноду и катоду будет отмечаться бесконечное сопротивление, но после кратковременного замыкания управляющего электрода к плате произойдет отпирание затвора симистора

На снимке проверка симистра мудьтиметром

Проверка симистора тестером принципиально ничем не отличается от проверки вольтметром, так как то идентичные приборы и принцип действия отличается только тем, что тестер работает по принципу — есть или нет проводимость. Если же речь идет о классическом тестере, а не о собирательном названии.

Стоимость

Стоимость симисторов не высока, так как это уже далеко не деталь высоких технологий. Самые дорогие элементы из семейства симисторов стоят не дороже ста рублей за одну штуку.

Где купить симисторы?

Симисторы можно купить в лбом магазине, торгующим радиоэлектронными компонентами. Продаются как отечественные, так и импортные варианты полупроводников.

В Москве:

  1. Зао ЧИП и ДИП, ул. Перерва, д. 49 тел.  +7 495 544-00-08 тел. 495-3472800
  2. Терра Электроника Москва, ул. Дербеневская, дом 1, Бизнес-парк «Дербеневский»,
    корп. 1, подъезд 23 тел.: (495) 221-78-03
  3. Чипрезистор ул. Большая Черёмушкинская, д.25, стр.97 тел.: 8(499)7-555-078

В Санкт-Петербурге:

  1. ЗАО Atlas Electronic Group  Серпуховскаяул., 18, оф.1А, тел.: +7 (812) 325-08-56
  2. Коломяжский пр., д. 26, тел.: +7 (812) 300-35-63;
  3. Трамвайный пр., д. 12 тел.: +7 (812) 377-17-25

Видео

Смотрите на видео как проверить симистор:

Симисторы – ключевые детали в современных полупроводниковых приборах, и без них многие бытовые приборы были бы несравненно больше и часто выходили бы из строя, а о точности их работы не могло вестись вообще никаких разговоров.

Ноя 18, 2015Татьяна Сумо

Источник: http://howelektrik.ru/elektrooborudovanie/procheeel/chto-takoe-simistor-i-kak-ispolzuetsya.html

Ссылка на основную публикацию
Adblock
detector