Физические свойства алюминия и меди: теплопроводность

Физические свойства алюминия

Алюминий – химический элемент третей группы периодической системы Д.И. Менделеева.

Таблица физических свойств алюминия

Плотность , (кг/м3) 2,7
Температура плавленияТпл, °С 660
Температура кипенияТкип, °С 2 327
Скрытая теплота плавления, Дж/г 393,6
Теплопроводность l , Вт/м •град (при 20° С) 228
ТеплоемкостьСр, Дж/(г · град) (при 0–100°С) 0,88
Коэффициент линейного расширения α×10-6, 1/°С (пр°С) 24,3
Удельное электросопротивление ρ×10-8, Ом× м (при 20°С) 2,7
Предел прочности σ в, МПа 40–60
Относительное удлинение δ , % 40–50
Твердость по Бринеллю НВ 25
Модуль нормальной упругости E , ГПа 70

Плотность алюминия

Плотность твердого и расплавленного алюминия снижается по мере увеличения его чистоты:

Плотность алюминия при 20°С

Степень чистоты, %   99,25 99,40 99,75 99.97 99,996 99.9998
Плотность при 20°С, г/см3  2,727 2,706 2,703 2,6996 2,6989 2,69808

Плотность расплавленного алюминия при 1000°С

Степень чистоты, % 99,25 99.40 99.75
Плотность, г/см3 2,311 2,291 2,289

Температура плавления и кипения

В момент плавления алюминия возрастает объем металла: для алюминия чистотой 99,65 % — на 6,25%, для более чистого металла — на 6,60 %. По мере повышения степени чистоты алюминия температура его плавления возрастает:

Зависимисть температуры плавления алюминия от чистоты

Степень чистоты, % 99,2 99,5 99,6 99,97 99,996
Температура плавления, °С 657 658 659,7 659,8 660,24

Теплопроводность алюминия

Теплопроводность алюминия повышается с увеличением степени его чистоты. Для технического алюминия (99,49 и 99,70%) теплопроводность при 200°С равна соответственно 209 и 222 Вт/(м×К).

Для электро­литически рафинированного алюминия чистотой 99,9% теплопроводность при 190°С возрастает до 343 Вт/(м×К). Примеси меди, магния и марганца в алюминии снижают его теплопроводность.

Например, добавка 2 % Mn к алюминию снижает теплопроводность с 209 до 126 Вт/(м×К).

Электропроводность алюминия

Алюминий отличается высокой электропроводностью (четвертое место среди металлов — после серебра, меди и золота). Удельная электропроводность алюминия чистотой 99,99 % при 20°С равна 37,9 мкСм×м, что составляет 63,7% от электропроводности меди [59,5 мкСм×м].

Более чистый алюминий [99,999 %] обладает электропроводностью, равной 65,9% от электро­проводности меди. На электропроводность алюминия влияет ряд факторов: степень деформации, режим термической обработки и т. д., решающую же роль играет природа примесей, присутствующих в алюминии.

Примеси по их отрицательному влиянию на электропроводность алюминия можно расположить в следующий ряд: Cr, V, Mn, Ti, Mg, Ag, Сu, Zn, Si, Fe Ni.

Наиболее отрицательное влияние на электросопротивление алюминия оказывают примеси Сг, V, Мп и Ti . Поэтому в алюминии для электротехнической промышленности сумма Cr+V+Mn+Ti не должна превышать 0,015% (марка А5Е) и даже 0,01 % (А7Е) при содержании кремния соответственно 0,12 и 0,16 %.

Влияние примесей на электропроводность алюминия

Основными примесями в алюминии являются кремний, железо, медь, цинк и титан.

При малых содержаниях кремния в алюминии (0,06%) величина Fe : Si (в пределах от 0,8 до 3,8) сравнительно мало влияет на его электросопротивление.

При увеличении содержания кремния до 0,15—0,16% влияние Fe : Si возрастает. Ниже приведено влияние Fe : Si на электропроводность алюминия:

Влияние Fe : Si на электропроводность алюминия

Fe : Si    1,07 1,44 2,00 2,68 3,56
Удельное электросопротивление алюминия,×10-2 мкОм·мм:
нагартованного 2,812 2,816 2,822 2,829 2,838
отожженного 2,769 2,771 2,778 2,783 2,788

Удельное электрическое сопротивление отожженной алюминиевой проволоки (ρ, мкОм·м) при 20°С в зависимости от содержания примесей можно приблизительно определить по следующей формуле: ρ=0,0264+0,007×(% Si)+0,0007×(% Fe) + 0,04×[% (Cr+V + Mn + Ti)].

Отражательная способность

С повышением степени чистоты алюминия возрастает его способность отражать свет от поверхности.

Так, степень отражения белого света от прокатанных алюминиевых листов (фольги) в зависимости от чистоты металла, возрастает следующим образом: для Аl 99,2%—75%, Аl 99,5%—84% и для Аl 99,8%—86%.

Поверхность листа, изготовленного из электролитически рафинированного алюминия чистотой 99,996%, отражает 90% падающего на него белого света.

Источник: https://www.metmk.com.ua/112spr_alum.php

Алюминий: физические свойства, получение, применение, история

Физические свойства алюминия

Алюминий — мягкий, легкий, серебристо-белый металл с высокой тепло- и электропроводностью. Температура плавления 660°C.

По распространенности в земной коре алюминий занимает 3-е место после кислорода и кремния среди всех атомов и 1-е место — среди металлов.

К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см3), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов.

Алюминий и его сплавы делятся по способу получения на деформируемые, подвергаемые обработке давлением и литейные, используемые в виде фасонного литья; по применению термической обработки — на термически не упрочняемые и термически упрочняемые, а также по системам легирования.

Получение

Впервые алюминий был получен Гансом Эрстедом в 1825 году. Современный метод получения разработали независимо друг от друга американец Чарльз Холл и француз Поль Эру.

Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием графитовых электродов.

Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Применение

Алюминий широко применяется как конструкционный материал.

Основные достоинства алюминия в этом качестве — легкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной пленкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий).

Электропроводность алюминия сравнима с медью, при этом алюминий дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Правда, у алюминия как электротехнического материала есть неприятное свойство — из-за прочной оксидной пленки его тяжело паять.

Благодаря комплексу свойств широко распространен в тепловом оборудовании.

Внедрение алюминиевых сплавов в строительстве уменьшает металлоемкость, повышает долговечность и надежность конструкций при эксплуатации их в экстремальных условиях (низкая температура, землетрясение и т.п.).

Алюминий находит широкое применение в различных видах транспорта. На современном этапе развития авиации алюминиевые сплавы являются основными конструкционными материалами в самолетостроении.

Алюминий и сплавы на его основе находят все более широкое применение в судостроении.

Из алюминиевых сплавов изготовляют корпусы судов, палубные надстройки, коммуникацию и различного рода судовое оборудование.

Идут исследования по разработке пенистого алюминия как особо прочного и легкого материала.

Драгоценный алюминий

В настоящее время алюминий является одним из самых популярных и нашедших широкое применение металлов.

С самого момента открытия в середине XIX века его считали одним из ценнейших благодаря удивительным качествам: белый как серебро, легкий по весу и не подверженный воздействию окружающей среды. Стоимость его была выше цен на золото.

Не удивительно, что в первую очередь алюминий нашел свое применение в создании ювелирных изделий и дорогих декоративных элементов.

В 1855 г. на Универсальной выставке в Париже алюминий был самой главной достопримечательностью. Изделия из алюминия располагались в витрине, соседствующей с бриллиантами французской короны. Постепенно зародилась определенная мода на алюминий. Его считали благородным малоизученным металлом, используемым исключительно для создания произведений искусства.

Наиболее часто алюминий использовали ювелиры. При помощи особой обработки поверхности ювелиры добивались наиболее светлого цвета металла, из-за чего его часто приравнивали к серебру. Но в сравнении с серебром, алюминий обладал более мягким блеском, чем обуславливалась еще большая любовь к нему ювелиров.

Так как химические и физические свойства алюминия сначала были слабо изучены, ювелиры сами изобретали новые техники его обработки. Алюминий технически легко обрабатывать, этот мягкий металл позволяет создавать отпечатки любых узоров, наносить рисунки и создавать желаемой формы изделия. Алюминий покрывался золотом, полировался и доводился до матовых оттенков.

Но со временем алюминий стал падать цене. Если в 1854-1856 годах стоимость одного килограмма алюминия составляла 3 тысячи старых франков, то в середине 1860-х годов за килограмм этого металла давали уже около ста старых франков. Впоследствии из-за низкой стоимости алюминий вышел из моды.

В настоящее время самые первые алюминиевые изделия представляют большую редкость. Большинство из них не пережило обесценивания металла и было заменено серебром, золотом и другими драгоценными металлами и сплавами.

В последнее время вновь наблюдается повышенный интерес к алюминию у специалистов. Этот металл стал темой отдельной выставки , организованной в 2000 году Музеем Карнеги в Питсбурге.

Во Франции расположен Институт истории алюминия, который в частности занимается исследованием первых ювелирных изделий из этого металла.

В Советском союзе из алюминия делали общепитовские приборы, чайники и т.д. И не только. Первый советский спутник был выполнен из алюминиевого сплава.

Другой потребитель алюминия — электротехническая промышленность: из него делаются провода высоковольтных линий передач, обмотки моторов и трансформаторов, кабели, цоколи ламп, конденсаторы и многие другие изделия.

Кроме того, порошок алюминия применяют во взрывчатых веществах и твердом топливе для ракет, используя его свойство быстро воспламеняться: если бы алюминий не покрывался тончайшей оксидной пленкой, то мог бы вспыхивать на воздухе.

Последнее изобретение — пеноалюминий, т.н. «металлический поролон», которому предсказывают большое будущее.

Источник: http://TochMeh.ru/info/alum2.php

Свойства алюминия

Свойства алюминия, одного металлов, принадлежащих к 13-й группе согласно периодической таблице химических элементов, достаточно обширны. Основные группы свойств: физические и химические. Этот легкий металл сочетает сразу множество физических характеристик относительно плотности, теплопроводности, коррозийной стойкости и пластичности.

Физические свойства алюминия зависят, как и у множества металлов, от степени чистоты металла. Только особая чистота материала, наиболее приближенная к единице (99,996%), гарантирует самые высокие показатели относительно физических свойств. Именно благодаря высоким показателям металл отлично поддается ковке, штамповке и другим видам обработки.

Что примечательно, алюминий поддается практически любому виду сварки, будь то контактная, газовая или иная разновидность. Серебристо-белый легкий металл характеризуется высокой теплопроводностью, при этом обладает малой плотностью.

Показатели электрической проводимости также достаточно велики, поэтому материал постоянно используется в сфере кабельной промышленности.

Завершают перечень физических свойств легкого металла замечательная антикоррозийная стойкость и высокая пластичность.

Плотность материала

Плотность алюминия – это выражение массы материала в содержании единицы объема. Плотностью также называют предел массы вещества по отношению к занимаемому этим веществом объему. Именно по такой формуле вычисляется плотность легкого металла особой чистоты.

Ее показатель равен 2,7*10 в кубе кг/м3. Плотность – это свойство, от которого зависит и другая характеристика материала, а именно – прочность. Так как плотность легкого металла довольно мала, то и прочность, соответственно, невелика.

Потому алюминий не используется в качестве конструкторского материала.

Чтобы увеличить прочность металла, к нему добавляются другие элементы с более высокой плотностью. Под воздействием более плотных добавок, прочность алюминия резко возрастает. Также показатели прочности можно поднять с помощью применения механической или термической обработки.

В результате удачного сочетания в сплавах, алюминий приобретает ценные конструкционные качества, выраженные в хорошей механической прочности при малой плотности материала.

Сплавы на основе алюминия в некоторых отраслях промышленности с успехом заменяют такие металлы (сплавы), как медь или олово, цинк или свинец.

Теплопроводность

Теплопроводность алюминия – одно из его физических свойств. Оно, как и многие, зависит от чистоты структуры материала. То есть, чем ближе к единице чистота алюминия, тем выше и его свойства теплопроводности.

Технический алюминий, процентность которого равна приблизительно 99,49, имеет теплопроводность (при 200 градусах Цельсия) 209 Вт/(м*К).

Если же технический алюминий обладает процентностью 99,70, то значение его теплопроводности достигает 222 Вт/(м*К).

В то время, когда материал электролитически рафирован и его чистота 99,9% – значение теплопроводности уже при 190 градусах Цельсия повышается до 343 Вт/(м*К). В отличие от прочности, которая повышается при сплаве алюминия с другими металлами, свойства теплопроводности в этом случае уменьшаются.

Примером можно привести добавку Mn. Всего два процента такой добавки способны уменьшить теплопроводность алюминия со значения 209 Вт/(м*К) до показателя, равного 126 Вт/(м*К).

Читайте также:  Как правильно выбирать сварочные краги (перчатки для сварщика)

Стоит также отметить, что свойства теплопроводности алюминия настолько высоки, что преимущество относительно них есть лишь у меди и серебра.

Температура плавления алюминия – достаточно весомый показатель, который учитывается любой отраслью промышленности, работающей с данным материалом.

Температура плавления – показатель нестабильный, во многом он зависит от того, какие материалы применены для примеси с алюминием. От температуры плавления зависит скорость обработки материала, то есть, можно сказать, производственные возможности.

Наиболее часто алюминий обрабатывается в России, Австралии, Канаде и США. В этих странах крупная доля отрасли промышленности занимается плавкой алюминия.

У каждой страны имеются свои технологии плавки, со временем, благодаря экспериментам с добавлением различных материалов, позволившие минимально возможно снизить показатель температуры плавления алюминия.

Наиболее точный, стандартный показатель температуры плавления алюминия составляет 660,32 градуса Цельсия. В связи с таким большим показателем, плавление материала можно организовать только в специальных условиях и специально оборудованных помещениях.

Чтобы осуществить этот процесс в домашних условиях, первое, что необходимо – оборудование. Обычно для этого используется тигельная муфельная печь.

Теплоемкость

Теплоемкость алюминия, если взять показатель постоянного давления и температуру 291 составит 581 кал/град, моль. Но теплоемкость материала может значительно поменяться, если значение температуры будет низким.

Высокий показатель теплоемкости диктует свои условия относительно использования достаточно мощных источников тепла. Иногда применяет даже метод подогрева. Высота уровня коэффициента линейного расширения, а также незначительный модуль упругости, могут создать значительные сварочные деформации.

Такое обстоятельство диктует условия использования зажимных приспособлений с повышенным уровнем надежности.

Возникающие деформации в конструкциях, к которым следует подходить с ответственностью, устраняются уже после сварки.

Стоит отметить, что высокие показатели таких свойств, как теплоемкость и теплопроводность, относительно самого алюминия, а также его сплавов, значительно влияют на то, какой именно метод сварки следует выбрать. Удельная теплоемкость алюминия, измеряемая в Дж/(кг*град.

Цельсия), равна значению 920. Если брать показатели удельной теплоемкости, нужно отметить – они меняются зависимо от агрегатного состояния материала.

Удельное сопротивление

Удельное сопротивление алюминия выше по сравнению с аналогичной величиной меди. Но на показатель удельного сопротивления меди может существенно повлиять такой метод обработки, как отжиг. На алюминий этот метод практически не имеет влияния. При этом, температурные коэффициенты меди и алюминия идентичны. В кабельной промышленности довольно часто применяется оксидная изоляция.

Теплостойкость оксидированного алюминиевого провода составляет 400 градусов Цельсия. Вообще, удельное сопротивление рассматриваемого материала превышает аналогичный показатель меди в 1,65 раза.

Алюминиевые провода достаточно часто подвергаются оксидной изоляции. В то время, чтобы данный метод применить по отношению к медному проводу, его необходимо покрыть хотя бы тонким слоем алюминия.

Оксидированный алюминий служит материалом для изготовления катушек, способных работать при высоких температурах.

Химические свойства

Химические свойства алюминия выражают его валентность, свойства взаимодействия с окружающими сферами. Первое, что стоит отметить – алюминий обладает достаточно высокой химической активностью.

Если рассматривать ряд напряжений металлов, то данный материал займет место между магнием и цинком.

Алюминию свойственно быстрое окисление кислородом, взятым из воздуха, в результате чего получается прочная защитная оксидная пленка.

Именно эта пленка является препятствием на пути к дальнейшему окислению материала.

Также оксидная пленка оберегает изделия из алюминия от взаимодействия с другими веществами, контакт с которыми может привести к разрушению структуры материала.

Именно защитной пленке отводится роль фактора, повышающего антикоррозийную стойкость алюминия. Если нарушается данная оксидная защита, то материал легко вступает во взаимодействие с влагой даже при обычной температуре.

Источник: https://promplace.ru/vidy-metallov-i-klassifikaciya-staty/svoistva-aluminiya-1507.htm

Что лучше медь или алюминий? — DRIVE2

Какой же все таки поставить радиатор? Я думаю каждый из нас задавался таким же вопросом придя на рынок или в магазин запчастей, осматривая огромный выбор радиаторов на любой вкус, удовлетворяющий даже самого извращенного привереды. Хочешь двух рядный, трех рядный, побольше, поменьше, с крупной секцией с мелкой, алюминиевый, медный. Вот именно из какого металла изготовлен радиатор и пойдет речь.

Одни считают, что медь. Это своеобразные староверы, так бы назвали их в XVII веке. Да, если взять не новые автомобили XX века, то тогда повсеместно устанавливались медные радиаторы.

Не зависимо от марки и модели, была ли это бюджетная микролитражка или тяжеловесный многотонный грузовик. Но есть и другая армия автовладельцев утверждая что радиаторы изготовленные из алюминия лучше медных.

Потому как их устанавливают на новые современные автомобили, на сверхмощные двигатели требующие качественного охлаждения.

И что самое интересное они все правы. И у тех и у других есть свои плюсы и естественно минусы. А теперь небольшой урок физики. Самым отличным показателем, на мой взгляд, являются цифры, а именно коэффициент теплопроводности.

Если сказать по простому то это способность вещества передавать тепловую энергию от одного вещества другому. Т.е. у нас имеется ОЖ, радиатор из N-ного металла и окружающая среда.

Теоретически чем выше коэффициент тем быстрее радиатор будет забирать тепловую энергию у ОЖ и быстрее отдавать в окружающую среду.

Итак, теплопроводность меди составляет 401 Вт/(м*К), а алюминия — от 202 до 236 Вт/(м*К). Но это в идеальных условиях. Казалось бы медь выиграла в данном споре, да это “+1” за медные радиаторы. Теперь кроме всего необходимо рассмотреть собственно конструкцию самих радиаторов.

Медный радиатор в разрезе

Медные трубки в основе радиатора, так же медные ленты воздушного радиатора для передачи полученного тепла в окружающую среду.

Крупные ячейки сот радиатора позволяют снизить потери скорости воздушного потока и позволяют прокачать большой объем воздуха за единицу времени.

Слишком малая концентрация ленточной части радиатора снижает эффективность теплопередачи и увеличивает концентрацию и силу локального нагрева радиатора.

Алюминиевый радиатор в разрезе

Я нашел два вида радиаторов в основе которых лежат алюминиевые и стальные трубки. Вот еще не маловажная часть, т.к. коэффициент теплопроводности стали очень мал по сравнению с алюминием, всего лишь 47 Вт/(м*К). И собственно только из-за высокой разности показателей, уже не стоит устанавливать алюминиевые радиаторы со стальными трубками.

Хотя они прочнее чистокровных алюмишек и снижают риски протечки от высокого давления, например при заклинившем клапане в крышке расширительного бачка.

Высокая концентрация алюминиевых пластин на трубках увеличивает площадь радиатора обдуваемого воздухом тем самым увеличивая его эффективность, но при этом увеличивается сопротивление воздушного потока и снижается объем прокачиваемого воздуха.

Ценовая политика же на рынке сложилась таким образом что медные радиаторы значительно дороже алюминиевых. Из общей картины можно сделать вывод что и те и другие радиаторы по своему хороши. Какой же все таки выбрать? Этот вопрос остается за вами.

Источник: https://www.drive2.ru/b/1618196/

Медь — свойства, характеристики свойства

Медь – это пластичный золотисто-розовый металл с характерным металлическим блеском. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Сu (Cuprum) и находится под порядковым номером 29 в I группе (побочной подгруппе), в 4 периоде.

Латинское название Cuprum произошло от имени острова Кипр. Известны факты, что на Кипре ещё в III веке до нашей эры находились медные рудники и местные умельцы выплавляли медь. Купить медь можно в комании «КуПрум».

По данным историков, знакомству общества с медью около девяти тысячелетий. Самые древние медные изделия найдены во время археологических раскопок на местности современной Турции.

Археологи обнаружили маленькие медные бусинки и пластинки для украшения одежды. Находки датируются рубежом VIII-VII тыс. до нашей эры.

Из меди в древности изготавливали украшения, дорогую посуду и различные инструменты с тонким лезвием.

Великим достижением древних металлургов можно назвать получение сплава с медной основой – бронзы.

Основные свойства меди

1. Физические свойства

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

2. Химические свойства

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь.

С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины.
Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы.

В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Способы получения меди

В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды – это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.

1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование.
Обогащают медные руды методом флотации и окислительного обжига.

Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность.

Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.

Окислительному обжигу подлежат медные руды и концентраты со значительным содержанием серы. При нагреве в присутствии кислорода происходит окисление сульфидов, и количество серы снижается почти в два раза. Обжигу подвергаются бедные концентраты, в которых содержится 8-25% меди. Богатые концентраты, содержащие 25-35% меди, плавят, не прибегая к обжигу.

Следующий этап пирометаллургического способа получения меди – это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.

В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.

Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.

2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.

Читайте также:  Виды колючей проволоки и особенности ее монтажа

Применение меди

Благодаря ценным качествам медь и медные сплавы используются в электротехнической и электромашиностроительной отрасли, в радиоэлектронике и приборостроении.

Существуют сплавы меди с такими металлами, как цинк, олово, алюминий, никель, титан, серебро, золото. Реже применяются сплавы с неметаллами: фосфором, серой, кислородом.

Выделяют две группы медных сплавов: латуни (сплавы с цинком) и бронзы (сплавы с другими элементами).

Медь обладает высокой экологичностью, что допускает её использование в строительстве жилых домов. К примеру, медная кровля за счёт антикоррозионных свойств, может прослужить больше ста лет без специального ухода и покраски.

Медь в сплавах с золотом используется в ювелирном деле. Такой сплав увеличивает прочность изделия, повышает стойкость к деформированию и истиранию.

Для соединений меди характерна высокая биологическая активность. В растениях медь принимает участие в синтезе хлорофилла. Поэтому её можно увидеть в составе минеральных удобрений. Недостаток меди в организме человека может вызвать ухудшение состава крови. Она есть в составе многих продуктов питания.

К примеру, этот металл содержится в молоке. Однако важно помнить, что избыток соединений меди может вызвать отравление. Именно поэтому нельзя готовить пищу в медной посуде. Во время кипячения в пищу может попасть большое количество меди.

Если же посуда внутри покрыта слоем олова, то опасности отравления нет.

В медицине медь используют, как антисептическое и вяжущее средство. Она является компонентом глазных капель от конъюнктивита и растворов от ожогов.

Источник: http://cu-prum.ru/med.html

Свойства алюминия и его сплавов

Алюминий является третьим по распространенности – после кислорода и кремния – среди около 90 химических элементов, который обнаружены в земной коре. Среди элементов-металлов – он первый. Этот металл обладает многими полезными свойствами, благодаря которым он широко применяется во всех сферах человеческой деятельности.

Алюминий – это ковкий металл, который имеет серебристо-белый цвет и легко обрабатывается большинством методов обработки металлов давлением: прокаткой, волочением, экструзией (прессованием), ковкой. Его плотность – удельный вес – составляет около 2,70 граммов на кубический сантиметр. Чистый алюминий плавится при температуре 660 градусов Цельсия.

Алюминий имеет относительно высокие коэффициенты теплопроводности и электропроводности. Этот металл в присутствии кислорода всегда покрыт тонкой, невидимой пленкой оксида. Эта пленка является в значительной степени непроницаемой и имеет довольно высокие защитные свойства. Поэтому алюминий обычно демонстрирует стабильность и длительный срок службы при нормальных атмосферных условиях.

Алюминий и драгоценные камни

Из-за его химической активности и высокому сродству к кислороду алюминий не встречается в природе в металлическом состоянии. Он всегда находится в комбинации с другими химическими элементами. Рубины и сапфиры, например, являются комбинациями – соединениями – алюминий и кислорода, гранаты – алюминия и кремния, а нефриты – это соединения алюминия с натрием, кислородом и кремнием.

Рубин

Квасцы (alums) – это соединения алюминия, которые широко применялись еще в далекой древности: в древних Египте и Вавилоне они шли на приготовление лекарств, растительных красок и дубление кож.

Физические  свойства алюминия

Основные физические  свойства алюминия и алюминиевых сплавов, которые являются полезными для применения:

  • плотность или удельный вес;
  • температура плавления;
  • коэффициент теплового расширения;
  • теплопроводность;
  • электропроводность.

Эти свойства представлены ниже в таблицах [1]. Они могут рассматриваться только как основание для сравнения сплавов и их состояний и не должны применяться для инженерных расчетов.

Они не являются гарантированными величинами, поскольку в большинстве случаев являются осредненными значениями для изделий с различными размерами, формами и методами изготовления.

Поэтому они не могут быть в точности репрезентативными для изделий любых размеров и форм.

Номинальные величины плотности популярных алюминиевых сплавов представлены для отожженного состояния (О). Различия в плотности связаны с тем, что сплавы имеют различные легирующие элементы и в разных количествах: кремний и магний легче алюминия (2,33 и 1,74  г/см3), а железо, марганец, медь и цинк – тяжелее (7,87; 7,40; 8,96 и 7,13 г/см3).

О влиянии физических свойств алюминия и, в частности, его плотности, на конструкционные характеристики алюминиевых сплавов см. здесь.

Уникальная комбинация свойств

Алюминий и его сплавы обладают уникальными комбинациями свойств. Это сделало алюминий одним из наиболее разносторонних, экономически выгодных и привлекательных конструкционных и потребительских материалов.

Алюминий находит применение в очень широком диапазоне – от мягкой, очень пластичной упаковочной фольги до самых ответственных космических проектов.

Алюминий по праву является вторым после стали среди многочисленных конструкционных материалов.

Низкая плотность

Алюминий – это один из самых легких промышленных конструкционных. Его плотность алюминия приблизительно в три раза ниже, чем у стали или меди. Это свойство обеспечивает ему высокую удельную прочность – прочность на единицу массы.

Эта характеристика алюминия находит ему применение в транспортном машиностроении, позволяя увеличивать грузоподъемность транспортных средств и экономить топливо.

Паромные катамараны, нефтяные танкеры и самолеты – вот лучшие примеры применения алюминия в транспорте.

Рисунок 1 – Плотность алюминия в зависимости от его чистоты и температуры [2]

Высокая коррозионная стойкость

Алюминий имеет высокую коррозионную стойкость благодаря тонкому слою оксида алюминия на его поверхности. Эта оксидная пленка мгновенно образуется, как только свежая поверхность алюминия входит в контакт с воздухом (рисунок 2).

Во многих случаях это свойство позволяет применение алюминия без какой-либо специальной обработки поверхности. Если требуется дополнительное защитное или декоративное покрытие, то применяют анодирование или окраску его поверхности.

Рисунок 2 а – естественное оксидное покрытие на сверхчистом алюминии; б – коррозия алюминия чистотой 99,5 % с естественным оксидным покрытием

в коорозионно агрессивной среде [2]

Прочность

Прочностные свойства чистого алюминия являются довольно низкими (рисунок 3). Однако эти механические свойства могут возрастать очень сильно, если в алюминий добавляют легирующие элементы и, кроме того, его подвергают термическому (рисунок 4) или деформационному (рисунок 5) упрочнению. Типичными легирующими элементами являются марганец, кремний, медь, магний и цинк.

Рисунок 3 – Влияние чистоты алюминия на его прочность и твердость [2]

Рисунок 4 – Прочностные свойства высокочистых деформируемых алюминиево-медных сплавов в различных состояниях [2]

(О – отожженный, W – сразу после закалки, Т4 – естественно состаренный, Т6 – искусственно состаренный)

Рисунок 5 — Механические свойства алюминия 99,50 %
в зависимости от степени полученной холодной деформации [2]

Прочность при низких температурах

Известно, что сталь становится хрупкой при низких температурах. Алюминий же, напротив, при низких температурах повышает свою прочность и сохраняет высокую вязкость. Именно это свойство дало возможность его применения в космических аппаратах, которые работают в условиях космического холода.

Рисунок — Изменение механические свойства алюминиевого сплава 6061
с понижением температуры

Высокая теплопроводность

Алюминий проводит тепло в три раза быстрее, чем сталь. Это свойство является очень важным в теплообменных аппаратах для нагрева или охлаждения рабочей среды. Отсюда — широкое применение алюминия и его сплавов в кухонной посуде, кондиционерах воздуха, примышленных и автомобильных теплообменниках.

Высокая отражательная способность

Алюминий является отличным отражателем лучистой энергии во всем интервале длин волн. Это свойство позволяет применять его в приборах, которые работают от ультрафиолетового спектра через видимый спектр до инфракрасного спектра и тепловых волн, а также таких электромагнитных волн, как радиоволны и радарные волны [1].

Алюминий имеет способность отражать более 80 % световых волн, что обеспечивает ему широкое применение в осветительных приборах (рисунок 6).

Благодаря этому свойству он находит применение в теплоизоляционных материалах.

Например, алюминиевая кровля отражает большую долю солнечного излучения, что обеспечивает в помещениях прохладную атмосферу летом и, в то же время, сохраняет тепло помещения зимой.

Рисунок 6 – Отражательные свойства алюминия [2]

Электрический проводник

Алюминий является одним из двух доступных металлов, которые имеют достаточно высокую электрическую проводимость, чтобы применять их в качестве электрических проводников.

Электрическая проводимость «электрической» марки алюминия 1350 составляет около 62 % от международного стандарта IACS – электрической проводимости отожженной меди. Однако удельный вес алюминия составляет только треть от удельного веса меди. Это означает, что он проводит в два раза больше электричества, чем медь того же веса.

Это свойство обеспечивает алюминию широкое применение в высоковольтных линиях электропередачи (ЛЭП), трансформаторах, электрических шинах и цоколях электрических лампочек.

Отсутствие магнитных свойств

Алюминий обладает свойством не намагничиваться в электромагнитных полях. Это делает его полезным при защите оборудования от воздействия электромагнитных полей. Другим применением этого свойства является компьютерные диски и параболические антенны.

Отсутствие токсичности

Это свойство алюминия – отсутствие токсичности – было обнаружено еще в начале его промышленного освоения.

Именно это свойство алюминия дало возможность  его применения для изготовления кухонной посуды и приборов без какого-либо вредного воздействия для тела человека.

Алюминий со своей гладкой поверхностью легко поддается чистке, что важно для обеспечения высокой гигиены при приготовлении пищи. Алюминиевая фольга и контейнеры широко и безопасно применяются при упаковке с прямым контактом с продуктами.

Звукоизоляция

Это свойство алюминия дает ему применение при выполнении звукоизоляции потолков.

Поглощение энергии удара

Алюминий имеет модуль упругости в три раза меньший, чем у стали. Это свойство дает большое преимущество для изготовления автомобильных бамперов и других средств безопасности автомобилей.

Рисунок — Автомобильные алюминиевые профили
для поглощения энергии удара при аварии

Не образует искр

Алюминиевые детали не образует искр при ударе друг о друга, а также другие цветные металлы. Это свойство находит применение при повышенных мерах пожарной безопасности конструкций, например, на морских нефтяных вышках.

Непревзойденная технологичность

Легкость, с которой алюминий может быть переработан в любую форму — технологичность, является одним из наиболее важных его достоинств. Очень часто он может успешно конкурировать с более дешевыми материалами, которые намного труднее обрабатывать:

  • Этот металл может быть отлит любым методом, который известен металлургам-литейщикам.
  • Он может прокатан до любой толщины вплоть до фольги, которая тоньше листа бумаги.
  • Алюминиевые листы можно штамповать, вытягивать, высаживать и формовать всем известными методами обработки металлов давлением.
  • Алюминий можно ковать всеми методами ковки
  • Алюминиевая проволока, которую волочат из круглого прутка, может затем сплетаться в электрические кабели любого размера и типа.
  • Почти не существует ограничений формы профилей, в которые получают из этого металла методом экструзии (прессования).

Источники:

  1. Aluminium and Aluminium Alloys. — ASM International, 1993.
  2. A. Sverdlin Properties of Pure Aluminum // Handbook of Aluminum, Vol. 1 /ed. G.E. Totten, D.S. MacKenzie, 2003

Источник: http://aluminium-guide.ru/fizicheskie-xarakteristik-deformiruemyx-alyuminievyx-splavov/

Медь, свойства, соединения, сплавы, производство, применение

Медь

Медь (лат. Cuprum) – химический элемент I группы периодической системы Менделеева (атомный номер 29, атомная масса 63,546).

В соединения медь обычно проявляет степени окисления +1 и +2, известны также немногочисленные соединения трехвалентной меди. Важнейшие соединения меди: оксиды Cu2O, CuO, Cu2O3; гидроксид Cu(OH)2, нитрат Cu(NO3)2.

Читайте также:  Характеристики и расшифровка стали 09г2с по госту

3H2O, сульфид CuS, сульфат(медный купорос) CuSO4.5H2O, карбонат CuCO3Cu(OH)2, хлорид CuCl2.2H2O.

Медь – один из семи металлов, известных с глубокой древности. Переходный период от каменного к бронзовому веку (4 – 3-е тысячелетие до н.э.

) назывался медным веком или халколитом (от греческого chalkos – медь и lithos – камень) или энеолитом (от латинского aeneus – медный и греческого lithos – камень).

В этот период появляются медные орудия. Известно, что при возведении пирамиды Хеопса использовались медные инструменты.

Чистая медь – ковкий и мягкий металл красноватого, в изломе розового цвета, местами с бурой и пестрой побежалостью, тяжелый (плотность 8,93 г/см3), отличный проводник тепла и электричества, уступая в этом отношении только серебру (температура плавления 1083 °C).

Медь легко вытягивается в проволоку и прокатывается в тонкие листы, но сравнительно мало активна. В сухом вохдухе и кислороде при нормальных условиях медь не окисляется.

Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl2, при нагревании с серой образует сульфид Cu2S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах.

Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соотвествующих солей: 2Cu + 4HCl + O2 = 2CuCl2 + 2H2O.

В атмосфере, содержащей CO2, пары H2O и др., покрывается патиной – зеленоватой пленкой основного карбоната (Cu2(OH)2CO3)), ядовитого вещества.

Медь входит более чем в 170 минералов, из которых для промышленности важны лишь 17, в том числе: борнит (пестрая медная руда – Cu5FeS4), халькопирит (медный колчедан – CuFeS2), халькозин (медный блеск – Cu2S), ковеллин (CuS), малахит (Cu2(OH)2CO3). Встречается также самородная медь.

Плотность меди, удельный вес меди и другие характеристики меди

Плотность – 8,93*103кг/м3;

Удельный вес – 8,93 г/cм3;
Удельная теплоемкость при 20 °C – 0,094 кал/град;
Температура плавления – 1083 °C ;
Удельная теплота плавления – 42 кал/г;
Температура кипения – 2600 °C ;
Коэффициент линейного расширения (при температуре около 20 °C) – 16,7 *106(1/град);
Коэффициент теплопроводности – 335ккал/м*час*град;
Удельное сопротивление при 20 °C – 0,0167 Ом*мм2/м;

Модули упругости меди и коэффициент Пуассона

Наименование материала Модуль Юнга, кГ/мм2 Модуль сдвига, кГ/мм2 Коэффициент Пуассона
Медь, литье 8400
Медь прокатанная 11000 4000 0,31-0,34
Медь холоднотянутая 13000 4900

СОЕДИНЕНИЯ МЕДИ

Оксид меди (I) Cu2O3 и закись меди (I) Cu2O, как и другие соединения меди (I) менее устойчивы, чем соединения меди (II).

Оксид меди (I), или закись меди Cu2O в природе встречается в виде минерала куприта.

Кроме того, она может быть получена в виде осадка красного оксида меди (I) в результате нагревания раствора соли меди (II) и щелочи в присутствии сильного восстановителя.

Оксид меди (II), или окись меди, CuO – черное вещество, встречающееся в природе (например в виде минерала тенерита). Его получают прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO2)2.
Оксид меди (II) хороший окислитель.

Гидроксид меди (II) Cu(OH)2 осаждается из растворов солей меди (II) при действии щелочей в виде голубой студенистой массы. Уже при слабом нагревании даже под водой он разлагается, превращаясь в черный оксид меди (II).
Гидроксид меди (II) – очень слабое основание.

Поэтому растворы солей меди (II) в большинстве случаев имеют кислую реакцию, а со слабыми кислотами медь образует основные соли.

Сульфат меди (II) CuSO4 в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях. Водный раствор сульфата меди имеет характерный сине-голубой цвет.

Эта окраска свойственна гидратированным ионам [Cu(H2O)4]2+, поэтому такую же окраску имеют все разбавленные растворы солей меди (II), если только они не содердат каких-либо окрашенных анионов. Из водных растворов сульфат меди кристаллизуется с пятью молекулами воды, образуя прозрачные синие кристаллы медного купороса.

Медный купорос применяется для электролитического покрытия металлов медью, для приготовления минеральных красок, а также в качестве исходного вещества при получении других соединений меди.

В сельском хозяйстве разбавленный раствор медного купороса применяется для опрыскивания растений и протравливания зерна перед посевом, чтобы уничтожить споры вредных грибков.

Хлорид меди (II) CuCl2. 2H2O. Образует темно-зеленые кристаллы, легко растворимые в воде. Очень концентрированные растворы хлорида меди (II) имеют зеленый цвет, разбавленные – сине-голубой.

Нитрат меди (II) Cu(NO3)2.3H2O. Получается при растворении меди в азотной кислоте. При нагревании синие кристаллы нитрата меди сначала теряют воду, а затем легко разлагаются с выделением кислорода и бурого диоксида азота, переходя в оксид меди (II).

Гидроксокарбонат меди (II) (CuOH)2CO3. Встречается в природе в виде минерала малахита, имеющего красивый изумрудно-зеленый цвет.

Искусственно приготовляется действием Na2CO3 на растворы солей меди (II).

2CuSO4 + 2Na2CO3 + H2O = (CuOH)2CO3↓ + 2Na2SO4 + CO2↑
Применяется для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике.

Ацетат меди (II) Cu (CH3COO)2.H2O. Получается обработкой металлической меди или оксида меди (II) уксусной кислотой. Обычно представляет собой смесь основных солей различного состава и цвета (зеленого и сине-зеленого). Под названием ярь-медянка применяется для приготовления масляной краски.

Комплексные соединения меди образуются в результате соединения двухзарядных ионов меди с молекулами аммиака.Из солей меди получают разноообразные минеральные краски.

Все соли меди ядовиты. Поэтому, чтобы избежать образования медных солей, медную посуду покрывают изнутри слоем олова (лудят).

ПРОИЗВОДСТВО МЕДИ

Медь добывают из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей добываемой меди. Как правило, медные руды содержат много пустой породы. Поэтому для получения меди используется процесс обогащения. Медь получают методом ее выплавки из сульфидных руд.

Процесс состоит из ряда операций: обжига, плавки, конвертирования, огневого и электролитического рафинирования. В процессе обжига большая часть примесных сульфидов превращается в оксиды. Так, главная примесь большинства медных руд пирит FeS2 превращается в Fe2O3.

Газы, образующиеся при обжиге, содержат CO2, который используется для получения серной кислоты. Получающиеся в процессе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Жидкий медный штейн (Cu2S с примесью FeS) поступает в конвертор, где через него продувают воздух.

В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь. Для извлечения ценных (Au, Ag, Te и т.д.) и для удаления вредных примесей черновая медь подвергается сначала огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом.

При этом примеси железа, цинка и кобальта окисляются, переходят в шлак и удаляются. А медь разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании.Основным компонентом раствора при электролитическом рафинировании служит сульфат меди – наиболее распространенная и дешевая соль меди.

Для увеличения низкой электропроводности сульфата меди в электролит добавляют серную кислоту. А для получения компактного осадка меди в раствор вводят небольшое количество добавок. Металлические примеси, содержащиеся в неочищенной (“черновой”) меди, можно разделить на две группы.1)Fe, Zn, Ni, Co.

Эти металлы имеют значительно более отрицательные электродные потенциалы, чем медь. Поэтому они анодно растворяются вместе с медью, но не осаждаются на катоде, а накапливаются в электролите в виде сульфатов. Поэтому электролит необходимо периодически заменять.

2)Au, Ag, Pb, Sn. Благородные металлы (Au, Ag) не претерпевают анодного растворения, а в ходе процесса оседают у анода, образуя вместе с другими примесями анодный шлам, который периодически извлекается. Олово же и свинец растворяются вместе с медью, но в электролите образуют малорастворимые соединения, выпадающие в осадок и также удаляемые.

СПЛАВЫ МЕДИ

Сплавы, повышающие прочность и другие свойства меди, получают введением в нее добавок, таких, как цинк, олово, кремний, свинец, алюминий, марганец, никель. На сплавы идет более 30% меди.

Латуни – сплавы меди с цинком ( меди от 60 до 90% и цинка от 40 до 10%) – прочнее меди и менее подвержены окислению.

При присадке к латуни кремния и свинца повышаются ее антифрикционные качества, при присадке олова, алюминия, марганца и никеля возрастает антикоррозийная стойкость.

Листы, литые изделия используются в машиностроении, особенно в химическом, в оптике и приборостроении, в производстве сеток для целлюлознобумажной промышленности.

Бронзы. Раньше бронзами называли сплавы меди (80-94%) и олова (20-6%). В настоящее время производят безоловянные бронзы, именуемые по главному вслед за медью компоненту.

Алюминиевые бронзы содержат 5-11% алюминия, обладают высокими механическими свойствами в сочетании с антикоррозийной стойкостью.

Свинцовые бронзы, содержащие 25-33% свинца, используют главным образом для изготовления подшипников, работающих при высоких давлениях и больших скоростях скольжения.

Кремниевые бронзы, содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.

Бериллиевые бронзы, содержащие 1,8-2,3% бериллия, отличаются твердостью после закалки и высокой упругостью. Их применяют для изготовления пружин и пружинящих изделий.

Кадмиевые бронзы – сплавы меди с небольшим количества кадмия (до1%) – используют для изготовления арматуры водопроводных и газовых линий и в машиностроении.

Припои – сплавы цветных металлов, применяемые при пайке для получения монолитного паяного шва. Среди твердых припоев известен медносеребряный сплав (44,5-45,5% Ag; 29-31%Cu; остальное – цинк).

ПРИМЕНЕНИЕ МЕДИ

Медь, ее соединения и сплавы находят широкое применение в различных отраслях промышленности.

В электротехнике медь используется в чистом виде: в производстве кабельных изделий, шин голого и контактного проводов, электрогенераторов, телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты, трубопроводы. Более 30% меди идет на сплавы.

Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры.

Высокая вязкость и пластичность металла позволяют применять медь для изготовления разнообразных изделий с очень сложным узором.

Проволока из красной меди в отожженном состоянии становится настолько мягкой и пластичной, что из нее без труда можно вить всевозможные шнуры и выгибать самые сложные элементы орнамента.

Кроме того, проволока из меди легко спаивается сканым серебряным припоем, хорошо серебрится и золотится. Эти свойства меди делают ее незаменимым материалом при производстве филигранных изделий.

Коэффициент линейного и объемного расширения меди при нагревании приблизительно такой же , как у горячих эмалей, в связи с чем при остывании эмаль хорошо держится на медном изделии, не трескается , не отскакивает. Благодаря этому мастера для производства эмалевых изделий предпочитают медь всем другим металлам.

Как и некоторые другие металлы, медь входит в число жизненно важных микроэлементов.

Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата – медного купороса CuSO4.5H2O.

В большом количестве он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь необходима всему живому.

Источник: https://tehtab.ru/Guide/GuideMatherials/Metalls/CooperBronsesAndBrasses/Cooper/CooperOverView/

Ссылка на основную публикацию
Adblock
detector