Характеристики, особенности термообработки и применение стали 40х

Особенности, характеристики и применение стали 9хс, преимущества сплава перед другими видами стали, основы термообработки – СибНовСтрой

sarmikСегодня мы рассмотрим как класс материалов углеродистые и низколегированные стали. Давайте сразу определимся, о чем идет речь. Многие называют углеродистыми все не коррозионно-стойкие стали, что в корне не верно.

В данной статье мы будем рассматривать только те стали, в которых основным легирующим элементом является углерод, а остальные лишь модифицируют некоторые свойства, не меняя принципов упрочнения (состав твердого раствора и фаз-упрочнителей).

Обычно это происходит при суммарном содержании легирующих элементов до 3-5%. Границы в каждом отдельном случае устанавливаются индивидуально, можно считать, что в большинстве случаев границей служит появление в структуре стали карбидов легирующих элементов.

Некоторые стали этой группы мы уже рассматривали (У8, ШХ15), теперь кратко рассмотрим основные особенности и наиболее типичных представителей.

Итак, начнем с углеродистых сталей. Углерод – практически единственный легирующий элемент (некоторые могут содержаться как примеси), некоторые стали могут быть легированы незначительными количествами марганца, кремния или кобальта.

Инструментальные углеродистые стали в соответствии с ГОСТ 1435–90 маркируют буквой «У» и числом, указывающим среднее содержание углерода в десятых долях процента.

Для изготовления инструмента применяют качественные стали марок У7–У13 и высококачественные стали марок У7А–У13А, химический состав которых приведен в табл. 1.

Таблица 1

Марки и химический состав инструментальных углеродистых сталей (ГОСТ 1435–90)

По механическим свойствам и назначению углеродистые стали подразделяются на:• стали повышенной вязкости (У7–У9) для изготовления инструмента с высокой режущей способностью, подвергающегося ударным нагрузкам (зубила, кернеры и т. д.

);• стали высокой твердости (У10–У13) для изготовления режущего инструмента, не подвергающегося ударным нагрузкам (напильники, шаберы и т. д.).

• Стали У15С и У16 в основном применяются (точнее применялись) для износостойких втулокК первой группе сталей вплотную примыкают и рессорно-пружинные стали типа 65Г и 70С2АТермическая обработка углеродистых инструментальных сталей состоит из двух этапов: предварительная и окончательная (предполагается, что изделия прошли стандартную ПТО).

Предварительная термическая обработка применяется для уменьшения деформации (в 1,5–2 раза) деталей из углеродистых сталей при последующей закалке. Она заключается в предварительной закалке с 740–760 °С с охлаждением в масле (возможно, несколько раз) и последующем отпуске при 550-600 °С (1 ч).

 Окончательная термическая обработка состоит из закалки и низкого отпуска, режимы которых указаны в табл. 2.Таблица 2

Режимы термической обработки углеродистых инструментальных сталей

Как мы видим, углеродистые стали имеют очень узкий интервал закалочных температур, поэтому необходимо максимально точно “попадать” в режим, что требует большого опыта и ответственного подхода к процессу.Время выдержки на 1 мм диаметра (толщины): 20–35с. при нагреве в соляной ванне и 50–80с. при нагреве в печи.

Углеродистые стали имеют высокую критическую скорость закалки — порядка 200–300 °С/с. Замедление охлаждения при закалке недопустимо, так как приводит к частичному распаду аустенита при температурах перлитного интервала и, как следствие, к появлению мягких пятен.

Поэтому только инструменты малого диаметра могут после закалки в воде (водном растворе) прокаливаться насквозь.Инструменты крупных размеров при закалке в воде и водных растворах солей, кислот и щелочей, охлаждающая способность которых выше, чем воды, закаливаются на мартенсит лишь в тонком поверхностном слое.

Поэтому инструменты, имеющие такую сердцевину, лучше переносят толчки и удары по сравнению с инструментами, закаленными насквозь на мартенсит. Для клинков может применяться зонная закалка, когда обух защищается специальными обмазками, снижающими скорость охлаждения.

В этих случаях можно получить твердый мартенсит на лезвийной части и достаточно вязкий и пластичный сорбит/троостит на теле и обухе клинка. Линия, разделяющая эти две области в японской традиции называется Хамон.

Углеродистые инструментальные стали отпускают при температурах не более 200 °С во избежание снижения твердости (для клинков возможен “зонный отпуск”, когда тело и обух клинка нагревают до более высокой температуры (обычно 400-500С), сохраняя на лезвийной части структуру низкоотпущенного мартенсита). Твердость окончательно термически обработанного инструмента из углеродистых сталей обычно лежит в интервале 57–63 HRC, а прочность при изгибе составляет 1800–2700 МПа.

Низколегированные стали. В этих сталях небольшие количества легирующих элементов обычно лишь влияют на прокаливаемость, незначительно изменяя другие свойства. Традиционно эти стали подразделяются на стали неглубокой и глубокой прокаливаемости.

В отдельную группу можно выделить стали для ударных инструментов. Химический состав данных сталей по ГОСТ 5950–73 приведен в табл. 3.Таблица 3

Марки и химический состав (масс. %) легированных инструментальных сталей (ГОСТ 5950–73)

Примечание. В обозначении марок первые цифры означают массовую долю углерода в десятых долях процента. Они могут не указываться, если массовая доля углерода близка к единице или больше единицы. Буквы означают:Г — марганец,Х — хром,В — вольфрам,С — кремний,Ф — ванадий,Н — никель,М — молибден.

Стали неглубокой прокаливаемости

Стали неглубокой прокаливаемости по устойчивости переохлажденного аустенита незначительно превосходят стали группы У7–У13, но благодаря легированию хромом (0,2–0,7 %), ванадием (0,15–0,30 %) и вольфрамом имеют большую устойчивость к перегреву, более высокие износо- и теплостойкость (в поверхностном слое).

Эти стали используются для изготовления инструментов, подвергаемых поверхностной (местной) закалке: пилы, зубила, штемпели, ножи для холодной и горячей резки, обрезные матрицы и пуансоны и т. п.

Некоторые стали имеют специальное применение:- сталь 13Х предназначена главным образом для бритвенных ножей и лезвий, хирургического и гравировального инструмента;- сталь В2Ф предназначена для ленточных пил и ножовочных полотен для резки сталей средней твердости, по работоспособности превосходящая стали типа 9ХФ в 1,5–2 раза;- сталь ХВ4Ф отличается особо высокой твердостью (HRC 67–69) и износостойкостью благодаря присутствию W6C, который не растворяется при температуре закалки. Эту сталь называют алмазной и из неё изготовляют резцы и фрезы для обработки с небольшими скоростями материалов с высокой поверхностной твердостью (отбеленных чугунов и закаленных деталей).

Стали глубокой прокаливаемости

Стали глубокой прокаливаемости имеют более высокое содержание хрома (0,6–1,7 %, иногда до 3%), а также совместное присутствие в ряде марок сталей хрома, марганца и кремния (вольфрама).

Такое комплексное легирование при относительно небольших количествах каждого элемента существенно повышает прокаливаемость, повышает однородность распределения карбидов (кроме сталей типа ХВГ) и уменьшает чувствительность сталей к перегреву.

) состоит в их малой деформируемости при закалке. Марганец, интенсивно снижая интервал мартенситного превращения, способствует сохранению остаточного аустенита (до 15–20 %), который компенсирует (частично или полностью) увеличение объема при образовании мартенсита.

Это качество сталей позволяет изготавливать из них инструмент, к которому предъявляют жесткие требования к размерной стабильности при термообработке. Термическая обработка: закалка + низкий отпуск проводится в соответствии с режимами, указанными в табл. 4.

Стали для ударных инструментов

Исходя из назначения эти стали должны обладать: повышенной вязкостью для предупреждения поломок и выкрашивания режущих кромок инструмента, работающего в условиях больших ударных нагрузок; высокими прокаливаемостью и закаливаемостью. Необходимый комплекс свойств сталей этой группы обеспечивается соответствующим легированием. Химический состав представлен в табл. 5.

Хромокремнистые стали (4ХС, 6ХС) прокаливаются в образцах диаметром до 50–60 мм при охлаждении в масле. Кроме того, стали, легированные кремнием, имеют повышенные устойчивость при отпуске и предел текучести. Недостатком этих сталей является хрупкость первого рода после отпуска при 270–400 °С на твердость 46–50 HRC.

Легирование сталей вольфрамом также повышает устойчивость против разупрочнения при отпуске.По структурному признаку стали, содержащие 0,4–0,5 % С, являются доэвтектоидными, а с 0,6 % С — эвтектоидными и заэвтектоидными.

Структура доэвтектоидных сталей после отжига состоит из пластинчатого и, реже, зернистого перлита с небольшими участками феррита, заэвтектоидных — из зернистого перлита. Кроме того, в структуре последних наряду с цементитом присутствует карбид МС.

После закалки структура характеризуется наличием мартенсита и остаточного аустенита, а при повышенном содержании углерода — еще и избыточных карбидов. Отпуск обеспечивает образование троститной структуры. Режимы термической обработки сталей указаны в табл. 5.Таблица 4.

Режимы окончательной термической обработки и твердость низколегированных инструментальных сталей

Режимы окончательной термической обработки сталей для ударных инструментов

К сталям последней группы примыкают рессорно-пружиннные стали типа 50ХФА, 60ХВС2А и т.д.

А теперь несколько советов по выбору стали и ее термической обработки

1. Для использования в составе многослойных/дамасских пакетов лучше выбирать относительно низколегированные стали с хромом не выше 1% (большие количества резко ухудшают свариваемость). Стали с марганцем при травлении как правило дают более темный фон, стали с хромом и никелем – более светлый.

При выборе сталей в пакет необходимо учитывать необходимость совпадения интервала закалочных температур с учетом возможного обезуглероживания.2. Для клинков в японской традиции надо выбирать стали с наименьшей прокаливаемостью – это позволит получить наиболее четкую линию “хамон”3.

Для изделий, подвергаемых ударным нагрузкам (длинномер, тесаки, топоры) лучше выбирать относительно низкоуглеродистые стали и использовать зонные закалку/отпуск4. Зачастую гораздо более “простая” сталь типа ШХ15 может показать в изделии лучший комплекс свойств чем, например, очень требовательная к режимам горячей деформации и ТО “Алмазная” сталь типа ХВ4Ф.5.

Для покупателей: в случае “углеродистых” сталей на первое место выходит доверие к Мастеру, поскольку только это в некоторой степени является гарантией опыта, точного соблюдения технологии и, следовательно, высоких свойств конечного изделия.

* При подготовке материала использован справочник «Металлы и сплавы», СПб, 2003г.

Источник:

Термическая обработка (термообработка) стали, сплавов, металлов

Термическая обработка (термообработка)  — это технологический процесс  изменения структуры сталей, сплавов  и  цветных металлов  посредством широкого диапазона температур: поэтапных нагреваний  и охлаждении с определенной скоростью.

Такая обработка очень сильно изменяет свойства сталей, сплавов, металлов в сторону улучшения показателей, но при этом не изменяя их химический состав.

 Можно сказать, что основная цель термической обработки – это улучшение свойств и характеристик изделий из него.

Виды (стадии) термической обработки стали

Отжиг — термическая обработка (термообработка) металла, представляющая собой процесс нагревания до заданной температуры, а затем процесс медленного охлаждения. Отжиг бывает разных видов в зависимости от уровня температур и скорости процесса.

Нормализация — термообработка, принципиально похожая на отжиг. Основное отличие в том, что процесс отжига предполагает печь, а при нормализации охлаждение стали проходит на воздухе.

Закалка — этап термообработки, основанный на нагревании сырья до такого уровня температуры, который является выше критического (перекристаллизация стали).

Закаленной стали (сплавам) свойственна неравновесная структура и  поэтому применяется такой вид термообработки как отпуск.

Отпуск — стадия термообработки, необходимая для снятия в стали и сплавах остаточного напряжения или максимального его снижения. Снижает хрупкость и твёрдость металла, увеличивает вязкость. Проводится после стадии закалки.

Старение — иначе еще называется дисперсионное твердение. После стадии отжига металл опять нагревают, но до более низкого уровня температур и с медленной скоростью остужают. Цель такой термообработки в получении особенных частиц упрочняющей фазы.

От степени необходимой глубины обработки различают термообработку поверхностную, которая затрагивает лишь поверхность изделий, и объемную, когда термическому воздействию подвергается весь объем сырья. 

В отраслевой промышленности, в частности – в машиностроении, термическую обработку  чаще всего проходит сталь следующих марок:

— сталь 45 (замещаемость  40Х, 50, 50Г2)

— сталь 40Х (замещаемость  38ХА, 40ХР, 45Х, 40ХС, 40ХФ, 40ХН)

— сталь 20 (замещаемость  15, 25)

— сталь 30ХГСА (замещаемость  40ХФА, 35ХМ, 40ХН, 25ХГСА, 35ХГСА)

— сталь 65Г

— сталь 40ХН

— сталь 35

— сталь 20Х13

Термообработка стали 45

Конструкционная углеродистая. Этап предварительной термической обработки называется  нормализация, проходит на воздухе, а не в печи.  довольно легко проходит механическую обработку. Точение, фрезеровку и т. д. Получают детали, например, типа вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, цилиндры, кулачки.  

Высокое содержание углерода (0,45%) обеспечивает хорошую закаливаемость и, соответственно, высокую твёрдость поверхности и прочность изделия. Сталь 45 калят «на воду», когда после калки деталь охлаждают в воде.

После охлаждения деталь подвергается низкотемпературному отпуску при температуре 200-300 градусов  по Цельсия. При такой термообработке стали 45 достигает твердость порядка 50 HRC.

Изделия: Кулачки станочных патронов, согласно указаниям ГОСТ, изготовляют из сталей 45 и 40Х. Твёрдость Rc = 45 -50. В кулачках четырёх-кулачных патронов твёрдость резьбы должна быть в пределах Rс = 35-42. Отпуск кулачков из стали 45 производится при температуре 220-280°, из стали 40Х при 380-450° в течение 30-40 мин.

Термообработка стали 40Х

Легированная конструкционная сталь. Для деталей повышенной прочности такие как оси, валы, вал-шестерни, плунжеры, штоки, коленчатые и кулачковые валы, кольца, шпиндели, оправки, рейки, зубчатые венцы, болты, полуоси, втулки и прочих деталей повышенной прочности.

Сталь 40Х также часто используется для производства поковок, штампованных заготовок и деталей трубопроводной арматуры.

Однако последние перечисленные детали нуждаются в дополнительной термической обработке, заключающейся в закалке через воду в масле или просто в масле с последующим отпуском в масле или на воздухе.

Помимо обычных примесей в своем составе имеет в определенных количествах специально вводимые элементы, которые призваны обеспечить специально заданные свойства.

Читайте также:  Мотоблок каскад: неисправности и инструкция по ремонту

В качестве легирующего элемента в данном случае используется хром, о чем говорит соответствующая маркировка.

Термообработка стали 20

Термообработка стали 20 — сталь конструкционная углеродистая качественная. Широкое применение в котлостроении, для труб и нагревательных трубопроводов различного назначения, кроме того промышленность выпускает пруток, лист. В качестве заменителя стали 20 применяют стали 15 и 25.
 

По требованиям к механическим свойствам выделяют пять категорий.

—  I категория: сталь всех видов обработки без испытания на ударную вязкость и растяжение.

— II категория: образцы из нормализованной стали всех видов обработки размером 25 мм проходят испытания на ударную вязкость и растяжение.

— III категория: испытания на растяжение проводят на образцах из нормализованной стали, размером 26-100 мм.

— IV категория: образцы для испытаний на растяжение и ударную вязкость изготавливают из термически обработанных заготовок размером не более 100 мм. Требования третьей и четвертой категории предъявляют к калиброванной, горячекатаной и кованной качественной стали.

— V категория. Испытания механических свойств на растяжение проводят на образцах из калиброванных термически обработанных (высокоотпущенных или отожженных) или нагартованных сталей.

Химический состав стали 20:  углерод (C) — 0.17-0.24 %, кремний (Si) — 0,17-0,37%, марганец (Mn) — 0,35-0,65 %;содержание меди (Cu) и никеля (Ni) допускается не более 0,25%, мышьяка (As) — не более 0,08%, серы (S) — не более 0,4%, фосфора (Р) — 0,035%.

Источник: http://sibnovostroy.ru/obrabotka/osobennosti-harakteristiki-i-primenenie-stali-9hs-preimushhestva-splava-pered-drugimi-vidami-stali-osnovy-termoobrabotki.html

График термической обработки Свойства стали 40 х

График термической обработки

Свойства стали 40 х Марка : 40 Х Заменитель: 45 Х, 38 ХА, 40 ХН, 40 ХС, 40 ХФ, 40 ХР Классификация : Сталь конструкционная легированная Дополнение: Сталь хромистая Применение: Оси, валы, вал-шестерни, плунжеры, штоки, коленчатые и кулачковые валы, кольца, шпиндели, оправки, рейки, губчатые венцы, болты, полуоси, втулки и другие улучшаемые детали повышенной прочности.

Химический состав в % материала 40 Х C Si Mn Ni S P Cr Cu 0. 36 – 0. 44 0. 17 – 0. 37 0. 5 – 0. 8 до 0. 3 до 0. 035 0. 8 – 1. 1 до 0.

3 Механические свойства стали 40 Х в зависимости от сечения Сечени е, мм σ0, 2 (МП σв(МПа) а) δ 4 (%) ψ % KCU (к Дж / м 2) HB Закалка 840 -860 °С, вода, масло. Отпуск 580 -650 °С, вода, воздух.

101 -200 490 655 15 45 59 212 -248 201 -300 440 635 14 40 54 197 -235 301 -500 345 590 14 38 49 174 -217

Механические свойства стали 40 Х при повышенных температурах Температура испытаний, °С σ0, 2 (МПа) σв(МПа) δ 5 (%) ψ % KCU (к. Дж / м 2) 42 58 68 80 118 98 78 Закалка 830 °С, масло.

Отпуск 550 °С 200 300 400 500 700 680 610 430 880 870 690 490 15 17 18 21 Образец диаметром 10 мм, длиной 50 мм кованый и отожженный.

Скорость деформирования 5 мм/мин, скорость деформации 0, 002 1/с 700 800 900 1000 1100 1200 140 54 41 24 11 11 175 98 69 43 26 24 33 59 65 68 68 70 78 98 100 100

Расшифровка марки стали 40 Х: эта марка означает, что в стали содержится 0, 40% углерода и менее 1, 5% хрома. Преимущества термообработки изделий из стали 40 Х в кипящем слое по сравнению с традиционными способами: был исследован нагрев под закалку высокопрочных болтов из сталей 40 Х и 38 ХС.

Из опытов следует, что при горизонтальном положении болта М 24 в кипящем слое частиц корунда диаметром 0, 32 мм, отапливаемом природным газом, медленнее всего температура повышается на оси болта в месте стыка его тела и головки.

Скорость нагрева в этой точке почти вдвое меньше, чем на поверхности в середине болта, так что во избежание перегрева температура кипящего слоя не должна заметно превышать конечную температуру нагрева.

В слое с температурой 900° С болт прогревается до 860° С примерно за 3 мин (термопара зачеканена на оси под головкой), в то время как в применяемых в настоящее время электропечах К-160 нагрев до 860° С длится, по нашим экспериментальным данным, 40 мин.

За это время в электропечах образуется значительный слой отслаивающейся окалины, в то время как при нагреве в кипящем слое с двухступенчатым сжиганием поверхность получается чистой. Эксперименты показали, что для аустенизации достаточна выдержка болтов из обеих сталей при температуре слоя 860 -870° С в течение 10 -15 мин. Поскольку скорость охлаждения этих изделий в кипящем слое оказалась недостаточной, закалку осуществляли в масле. Отпущенные после закалки (410° С, 80 мин) болты отличались высокими показателями прочности при достаточной пластичности:

Структура аустенита Аустенитная структура отличается полиэдрической формой зерен, внутри которых часто наблюдаются характерные двойники, показанные на рисунке 1. При окислительном травлении шлифа на нем возникает тончайшая окисная пленка, которая имеет различную толщину на поверхности каждого зерна, зависящая от кристаллографической ориентации зерна.

Таким образом, вместо гладкой поверхности шлифа на нем образуется характерный рельеф в виде впадин и выступов. На рисунке 2, 3, 4, 5 схематически показаны зерна аустенита. Очень часто в структуре марганцевых аустенитных сталей появляются тонкие линии, покрывающие аустенитные зерна.

Эти линии появляются вследствие возникновения внутренних напряжений при холодной деформации, а также при затвердевании металла, а в некоторых случаях и при закалке. Эти тонкие линии очень часто не исчезают и последующих термических обработок. Структура такой аустенитной стали схематически показана на рисунке 6.

В структуре металла отливок очень часто можно наблюдать типичное дендритное строение (рис. 7). Сильно развитая и ярко выраженная сетка дендритной структуры.

Структура мартенситов В марганцевых сталях было обнаружено большое количество разновидностей мартенситной структуры.

Нужно отметить, что присутствие мартенсита в структуре аустенитных марганцевых сталей не имеет такого большого значения, как присутствие других структурных составляющих и карбидов. Мартенсит имеет игольчатое строение, как показано на рисунке 9.

МАРТЕНСИТ – структура сплавов, возникающая МАРТЕНСИТ при их термической обработке при быстром охлаждении. В железоуглеродистых сплавах (сталях и чугунах) мартенсит возникает при содержании углерода более 0, 3% при закалке в воде.

Перед закалкой сталь нагревается до температур, обеспечивающих переход феррита и перлита в аустенит(выше 723° С). У мартенсита игольчатая микроструктура, высокая твердость и прочность, низкая пластичность.

Источник: http://present5.com/grafik-termicheskoj-obrabotki-svojstva-stali-40-x/

Термическая обработка (термообработка) стали, сплавов, металлов

Термическая обработка (термообработка)  — это технологический процесс  изменения структуры сталей, сплавов  и  цветных металлов  посредством широкого диапазона температур: поэтапных нагреваний  и охлаждении с определенной скоростью.

Такая обработка очень сильно изменяет свойства сталей, сплавов, металлов в сторону улучшения показателей, но при этом не изменяя их химический состав.

 Можно сказать, что основная цель термической обработки – это улучшение свойств и характеристик изделий из него.

Виды (стадии) термической обработки стали

Отжиг — термическая обработка (термообработка) металла, представляющая собой процесс нагревания до заданной температуры, а затем процесс медленного охлаждения. Отжиг бывает разных видов в зависимости от уровня температур и скорости процесса.

Нормализация — термообработка, принципиально похожая на отжиг. Основное отличие в том, что процесс отжига предполагает печь, а при нормализации охлаждение стали проходит на воздухе.

Закалка — этап термообработки, основанный на нагревании сырья до такого уровня температуры, который является выше критического (перекристаллизация стали).

После выдержки в такой температуре в заданном интервале времени происходит охлаждение, быстрое, с заданной скоростью.

Закаленной стали (сплавам) свойственна неравновесная структура и  поэтому применяется такой вид термообработки как отпуск.

Отпуск — стадия термообработки, необходимая для снятия в стали и сплавах остаточного напряжения или максимального его снижения. Снижает хрупкость и твёрдость металла, увеличивает вязкость. Проводится после стадии закалки.

Старение — иначе еще называется дисперсионное твердение. После стадии отжига металл опять нагревают, но до более низкого уровня температур и с медленной скоростью остужают. Цель такой термообработки в получении особенных частиц упрочняющей фазы.

От степени необходимой глубины обработки различают термообработку поверхностную, которая затрагивает лишь поверхность изделий, и объемную, когда термическому воздействию подвергается весь объем сырья. 

В отраслевой промышленности, в частности – в машиностроении, термическую обработку  чаще всего проходит сталь следующих марок:

– сталь 45 (замещаемость  40Х, 50, 50Г2)

– сталь 40Х (замещаемость  38ХА, 40ХР, 45Х, 40ХС, 40ХФ, 40ХН)

– сталь 20 (замещаемость  15, 25)

– сталь 30ХГСА (замещаемость  40ХФА, 35ХМ, 40ХН, 25ХГСА, 35ХГСА)

– сталь 65Г

– сталь 40ХН

– сталь 35

– сталь 20Х13

Термообработка стали 45

Конструкционная углеродистая. Этап предварительной термической обработки называется  нормализация, проходит на воздухе, а не в печи.  довольно легко проходит механическую обработку. Точение, фрезеровку и т. д. Получают детали, например, типа вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, цилиндры, кулачки.  

После закалки, которая является конечной стадией термообработки,  детали достигают высокого уровня прочности и отличных показателей износостойкости. Подвергаются шлифовке.

Высокое содержание углерода (0,45%) обеспечивает хорошую закаливаемость и, соответственно, высокую твёрдость поверхности и прочность изделия. Сталь 45 калят «на воду», когда после калки деталь охлаждают в воде.

После охлаждения деталь подвергается низкотемпературному отпуску при температуре 200-300 градусов  по Цельсия. При такой термообработке стали 45 достигает твердость порядка 50 HRC.

Изделия: Кулачки станочных патронов, согласно указаниям ГОСТ, изготовляют из сталей 45 и 40Х. Твёрдость Rc = 45 -50. В кулачках четырёх-кулачных патронов твёрдость резьбы должна быть в пределах Rс = 35-42. Отпуск кулачков из стали 45 производится при температуре 220-280°, из стали 40Х при 380-450° в течение 30-40 мин.

Расшифровка марки стали 45: марка 45 означает, что в стали содержится 0,45% углерода,C 0,42 – 0,5; Si 0,17 – 0,37;Mn 0,5 – 0,8; Ni до 0,25; S до 0,04; P до 0,035; Cr до 0,25; Cu до 0,25; As до 0,08.

Термообработка стали 40Х

Легированная конструкционная сталь. Для деталей повышенной прочности такие как оси, валы, вал-шестерни, плунжеры, штоки, коленчатые и кулачковые валы, кольца, шпиндели, оправки, рейки, зубчатые венцы, болты, полуоси, втулки и прочих деталей повышенной прочности.

Сталь 40Х также часто используется для производства поковок, штампованных заготовок и деталей трубопроводной арматуры.

Однако последние перечисленные детали нуждаются в дополнительной термической обработке, заключающейся в закалке через воду в масле или просто в масле с последующим отпуском в масле или на воздухе.

Расшифровка марки стали 40Х. Цифра 40 указывает на то, что углерод в стали содержится в объеме 0,4 %. Хрома содержится менее 1,5 %.

Помимо обычных примесей в своем составе имеет в определенных количествах специально вводимые элементы, которые призваны обеспечить специально заданные свойства.

В качестве легирующего элемента в данном случае используется хром, о чем говорит соответствующая маркировка.

Термообработка стали 20

Термообработка стали 20 – сталь конструкционная углеродистая качественная. Широкое применение в котлостроении, для труб и нагревательных трубопроводов различного назначения, кроме того промышленность выпускает пруток, лист. В качестве заменителя стали 20 применяют стали 15 и 25.
 

По требованиям к механическим свойствам выделяют пять категорий.

–  I категория: сталь всех видов обработки без испытания на ударную вязкость и растяжение.

– II категория: образцы из нормализованной стали всех видов обработки размером 25 мм проходят испытания на ударную вязкость и растяжение.

– III категория: испытания на растяжение проводят на образцах из нормализованной стали, размером 26-100 мм.

– IV категория: образцы для испытаний на растяжение и ударную вязкость изготавливают из термически обработанных заготовок размером не более 100 мм. Требования третьей и четвертой категории предъявляют к калиброванной, горячекатаной и кованной качественной стали.

– V категория. Испытания механических свойств на растяжение проводят на образцах из калиброванных термически обработанных (высокоотпущенных или отожженных) или нагартованных сталей.

Химический состав стали 20:  углерод (C) – 0.17-0.24 %, кремний (Si) – 0,17-0,37%, марганец (Mn) – 0,35-0,65 %;содержание меди (Cu) и никеля (Ni) допускается не более 0,25%, мышьяка (As) – не более 0,08%, серы (S) – не более 0,4%, фосфора (Р) – 0,035%.

Читайте также:  Сборка рейсмусового станка своими руками

Структура стали 20 представляет собой смесь перлита и феррита. Термическая обработка стали 20 позволяет получать структуру реечного (пакетного) мартенсита. При таких структурных преобразованиях прочность возрастает, и пластичность уменьшается.

После термического упрочнения прокат из стали 20 можно использовать для изготовления метизной продукции (класс прочности 8.8).

Технологические свойства стали 20: Температура начала ковки стали 20 составляет 1280° С, окончания – 750° С, охлаждение поковки – воздушное. Сталь 20 нефлокеночувствительна и не склонна к отпускной способности. Свариваемость стали 20 не ограничена, исключая детали, подвергавшиеся химико-термической обработке. Рекомендованы способы сварки АДС, КТС, РДС, под газовой защитой и флюсом.

Сталь 20 применяют для производства малонагруженных деталей ( пальцы, оси, копиры, упоры, шестерни) , цементуемых деталей для длительной и весьма длительной службы (эксплуатация при температуре не выше 350° С) , тонких деталей, работающих на истирание.

Сталь 20 без термической обработки или после нормализации используется для производства крюков кранов, вкладышей подшипников и прочих деталей для эксплуатации под давлением в температурном диапазоне от -40 до 450°С .

Сталь 20 после химико-термической обработки идет на производство деталей, которым требуется высокая поверхностная прочность ( червяки, червячные пары, шестерни) .

Широко применяют сталь 20 для производства трубопроводной арматуры, труб, предназначенных для паропроводов с критическими и сверхкритическими параметрами пара, бесшовных труб высокого давления, сварных профилей прямоугольного и квадратного сечения и т. д.

Термообработка стали 30ХГСА

Относится к среднелегированной конструкционной стали.

Сталь 30ХГСА проходит улучшение – закалку с последующим высоким отпуском при 550-600 °С, поэтому применяется при создании улучшаемых деталей (кроме авиационных деталей это могут быть различные корпуса обшивки, оси и валы, лопатки компрессорных машин, которые эксплуатируются при 400°С, и многое другое), рычаги, толкатели, ответственные сварные конструкции, работающие при знакопеременных нагрузках, крепежные детали, работающие при низких температурах.

Сталь 30ХГСА обладает хорошей выносливостью, отличными показателями ударной вязкости, высокой прочностью. Она также отличается замечательной свариваемостью.

Сварка стали 30ХГСАтоже имеет свои особенности. Она осуществляется с предварительным подогревом материала до 250-300 °С с последующим медленным охлаждением.

Данная процедура очень важна, поскольку могут появиться трещины из-за чувствительности стали к резким перепадам температуры после сварки.

Поэтому по завершении сварных работ горелка должна отводиться медленно, при этом осуществляя подогрев материала на расстоянии 20-40 мм от места сварки.

Также, не более, чем спустя 8 часов по завершении сварки сварные узлы стали 30ХГСА нуждаются в закалке с нагревом до 880 °С с последующим высоким отпуском. Далее изделие охлаждается в масле при 20-50 °С. Отпуск осуществляется нагревом до 400 – 600 °С и охлаждением в горячей воде. Сварку же необходимо выполнять максимально быстро, дабы избежать выгорания легирующих элементов.

После прохождения термомеханической низкотемпературной обработки сталь 30ХГСА приобретает предел прочности до 2800 МПа, ударная вязкость повышается в два раза (в отличии от обычной термообработки стали 30хгса), пластичность увеличивается.

Термообработка стали 65Г

Сталь конструкционная рессорно-пружинная. Используют в промышленности пружины, рессоры, упорные шайбы, тормозные ленты, фрикционные диски, шестерни, фланцы, корпусы подшипников, зажимные и подающие цанги и другие детали, к которым предъявляются требования повышенной износостойкости, и детали, работающие без ударных нагрузок. (заменители: 70, У8А, 70Г, 60С2А, 9ХС, 50ХФА, 60С2, 55С2).

Термообработка стали 40

Сталь конструкционная углеродистая качественная. Использование в промышленности: трубы, поковки, крепежные детали, валы, диски, роторы, фланцы, зубчатые колеса, втулки для длительной и весьма длительной службы при температурах до 425 град.

Термообработка стали 40ХН

Сталь конструкционная легированная Используется в отраслевой в промышленности: оси, валы, шатуны, зубчатые колеса, валы экскаваторов, муфты, валы-шестерни, шпиндели, болты, рычаги, штоки, цилиндры и другие ответственные нагруженные детали, подвергающиеся вибрационным и динамическим нагрузкам, с предъявляемыми  требованиями  повышенной прочности и вязкости. Валки рельсобалочных и крупносортных станов для горячей прокатки металла.

Термообработка сталь 35

Сталь конструкционная углеродистая качественная. Используется  в отраслевой промышленности. Это детали невысокой прочности, подвергающиеся невысокому уровню напряжения: оси, цилиндры, коленчатые валы, шатуны, шпиндели, звездочки, тяги, ободы, траверсы, валы, бандажи, диски и другие детали.

Термообработка стали 20Х13

Сталь коррозионно-стойкая жаропрочная.

Используется в  энергетическом машиностроении и печестроении; турбинные лопатки, болты, гайки, арматура крекинг-установок с длительным сроком службы при температурах до 500 град; сталь мартенситного класса Сталь марки 20Х13 и другие стали мартенситного класса: жаропрочные хромистые стали мартенситного класса применяют в различных энергетических установках, они работают при температуре до 600° С. Из них изготовляют роторы, диски и лопатки турбин, в последнее время их используют для кольцевых деталей больших толщин. Существует большое количество марок сталей данного класса. Общим для всех является пониженное содержание хрома, наличие молибдена, ванадия и вольфрама. Они эффективно упрочняются обычными методами термообработки, которая основана на у – a-превращении и предусматривает получение в структуре мартенсита с последующим улучшением в зависимости от требований технических условий. (заменители: 12Х13, 14Х17Н2)  

Пресс-служба группы компаний ВоКа

17 сентября 2016г

Источник: http://metizmsk.ru/blog/termicheskaya-obrabotka-termoobrabotka-stali-splavov-metallov

Сталь 40Х: характеристики, применение, твердость и свариваемость стали 40Х

Марка стали: 40Х (заменители 45Х, 38ХА, 40ХН, 40ХС, 40ХФ, 40ХР).

Класс: сталь конструкционная легированная.

Использование в промышленности: оси, валы, вал-шестерни, плунжеры, штоки, коленчатые и кулачковые валы, кольца, шпиндели, оправки, рейки, губчатые венцы, болты, полуоси, втулки и другие улучшаемые детали повышенной прочности..

Твердость: HB 10 -1 = 217 МПа

Свариваемость материала: трудносвариваема. Способы сварки: РДС, ЭШС, необходимы подогрев и последующая термообработка. КТС – необходима последующая термообработка.

Температура ковки, oС: начала 1250, конца 800. Сечения до 350 мм охлаждаются на воздухе.

Флокеночувствительность: чувствительна.

Склонность к отпускной хрупкости: склонна.

Вид поставки:

  • Сортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-2006, ГОСТ 2591-2006, ГОСТ 2879-2006, ГОСТ 10702-78.
  • Калиброванный пруток ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73.
  • Шлифованный пруток и серебрянка ГОСТ 14955-77.
  • Лист толстый ГОСТ 1577-93, ГОСТ 19903-74.
  • Полоса ГОСТ 103-2006, ГОСТ 1577-93, ГОСТ 82-70.
  • Поковки ГОСТ 8479-70.
  • Трубы ГОСТ 8731-74, ГОСТ 8733-74, ГОСТ 13663-86.
Зарубежные аналоги марки стали 45
США 5135, 5140, 5140H, 5140RH, G51350, G51400, H51350, H51400
Германия 1.7034, 1.7035, 1.7045, 37Cr4, 41Cr4, 41CrS4, 42Cr4
Япония SCr435, SCr435H, SCr440, SCr440H
Франция 37Cr4, 38C4, 38C4FF, 41Cr4, 42C4, 42C4TS
Англия 37Cr4, 41Cr4, 530A36, 530A40, 530H36, 530H40, 530M40
Евросоюз 37Cr4, 37Cr4KD, 41Cr4, 41Cr4KD, 41CrS4
Италия 36CrMn4, 36CrMn5, 37Cr4, 38Cr4KB, 38CrMn4KB, 41Cr4, 41Cr4KB
Бельгия 37Cr4, 41Cr4, 45C4
Испания 37Cr4, 38Cr4, 38Cr4DF, 41Cr4, 41Cr4DF, 42Cr4, F.1201, F.1202, F.1210, F.1211
Китай 35Cr, 38CrA, 40Cr, 40CrA, 40CrH, 45Cr, 45CrH, ML38CrA, ML40Cr
Швеция 2245
Болгария 37Cr4, 40Ch, 41Cr4
Венгрия 37Cr4, 41Cr4, Cr2Z, Cr3Z
Польша 38HA, 40H
Румыния 40Cr10, 40Cr10q
Чехия 14140
Австралия 5132H, 5140
Южная Корея SCr435, SCr435H, SCr440, SCr440H

Сталь 40Х и ее характеристики

В нашей компании вы можете заказать разнообразные изделия из металла, используемые в быту, строительстве и в промышленности. От того, из какого материала создан металлопрокат, зависят его качества, свойства и характеристики.

Мы предлагаем вам ознакомиться с разнообразными видами стали. К примеру, марка стали 40Х, относящаяся к классу конструкционной легированной, пользуется особой популярностью. В данном разделе вы узнаете больше про этот материал.

Если у вас возникают вопросы по товарам или вы хотите сделать заказ, то звоните нашим специалистам! Менеджеры компании работают круглосуточно.

В данном материале имеется 0,40 процента углерода и меньше полутора процентов хрома.

Этот материал относится к трудносвариваемым. Вы можете осуществлять сваривание ручным дуговым методом и электрошлаковым, но в начале следует подогреть сталь, а после произвести термическую обработку. При контактной точечной сварке также требуется дальнейшая термическая обработка.

Твердость стали 40Х следующая: HB 10 -1 = 217 МПа.

Заменителями этого материала могут стать марки 45X, 38XA, 40XH, 40XC, 40ХФ, 40XP.

Если вы собираетесь ковать эту сталь, то в начале процесса нужно нагреть ее до 1 250 градусов по Цельсию, а в конце остудить до 800 градусов. Если ковке подвергались изделия сечением до 350 миллиметров, их нужно охлаждать на воздухе.

Больше информации вы можете узнать из таблиц, расположенных на сайте.

Применение 40Х

Она поставляется в виде сортового, а также фасонного проката. Вы можете найти прутья с разнообразными видами обработки поверхности, сделанные из этого материала. Также популярностью пользуется серебрянка и листы разной толщины. Из данной стали изготавливают и трубы, и полосы. Она используется для производства поковок ГОСТ 8479-70.

Этот материал широко применяется в промышленной сфере.

Сталь Ст 40Х используется для изготовления осей и стержней для передачи крутящего момента, вал-шестеренок, поршней, трубопроводной арматуры, колец, вращающихся деталей, инструментов для клепальных работ, измерительных устройств, болтов, деталей для аппаратов с вращающимися барабанами, деталей конической формы и прочих элементов. Сталь марки 40Х требуется, если нужно произвести улучшаемые изделия, имеющие повышенную прочность.

Источник: http://atl-met.ru/stal-40h

Отличные свойства при правильной термообработке

Сталь У8 принадлежит к классу углеродистых эвтектоидных сталей. В исходном состоянии –  после ковки или прокатки и  охлаждения на воздухе её структура  состоит из чистого пластинчатого перлита. Термическую обработку таких сталей делают в два приёма: предварительная и окончательная обработка.

Первая заключается в отжиге на зернистый перлит  при температуре 750—760 °С. Такая структура, во-первых, облегчает механическую обработку, во-вторых – после закалки свойства будут более однородными.

Особенность закалки углеродистых сталей, в том числе У8, недопустимость даже малейшего замедления при закалке из-за очень высокой критическую скорости. Могут образоваться мягкие пятна.

Для стали У8 применяют прерывистую закалку. Чтобы её осуществить раскалённую деталь помещают сначала в воду, и вслед за тем,  переносят в масло, где происходит окончательное охлаждение.

Таким образом, удаётся избежать появления мягких пятен, но из-за  уменьшения скорости охлаждения на последнем этапе снижаются структурные напряжения.

Закалку стали У8 производят при 780 °C, а температура отпуска – 400 °C.

Гарантированный результат при соблюдении параметров

Сталь  40Х13 хорошо переносит горячую пластическую деформацию, которая проводится в температурном интервале 1100-860 °С.
Сталь склонна к образованию трещин при быстром нагреве или охлаждении. Поэтому нагрев до 830-ти °С  применяют медленный, а после деформации  охлаждение в песке или в печи.

После горячей деформации применяются промежуточный отжиг при температурах от 740-ка до 800 °С или полный отжиг в интервале от 810-ти до 880 °С с медленным охлаждением не больше, чем 25-50 °С/ч до 600 °С.

Закалка 40Х13  в интервале от 950 до1050 °С  применяется как окончательная термическая обработка. Охлаждение – на воздухе или в масле. Далее делается отпуск с учетом  заданной твердости и коррозионной стойкости.

Для стали 40Х13, применяемой в качестве заготовки для хирургических инструментов, делают ступенчатую закалку с 1030-1040 °С с охлаждением в щелочном растворе при 350 °С.

Это нужно, чтобы уменьшить коробление и повысить упругие свойства.

К термообработке стали 40Х предъявляют особые требования. Время охлаждения деталей из  этой стали в воде или на воздухе или в воде должно быть небольшим из-за её склонности к отпускной хрупкости и хладноломкости.

Наличие  хрома  уменьшает критическую скорость закалки и предотвращает рост зерна. Температура мартенситного превращения стали 40Х ниже, прокаливаемость её выше, чем у простой углеродистой ст.40. В результате  ее отпуск производится при более высокой температуре.

Сталь 40Х относится к группе улучшаемых. Её эксплуатационные характеристики действительно улучшаются в результате правильного термического воздействия. Благодаря ему, механические характеристики стали выше, чем у целого ряда конструкционных сталей.

При сохранении достаточно высокой вязкости  и пластичности, эта сталь является одной из наиболее прочных.

Источник: https://www.equipnet.ru/company-news/metal/metal_1445.html

Super User

В машиностроении чаще всего подвергают термообработки сталь 45 (в качестве заменителя 40Х, 50, 50Г2), сталь 40х (в качестве заменителя стали 38ха, 40хр, 45х, 40хс, 40хф, 40хн), сталь 20 (в качестве заменителя 15, 25), сталь 30хгса (заменители 40хфа, 35хм, 40хн, 25хгса, 35хгса), сталь 65г, сталь 40хн, сталь 35, и сталь 20х13, также

Термообработка стали 45

Термообработка стали 45 – конструкционная углеродистая. После предварительной термообработки стали 45 – нормализации, довольно легко проходит механическую обработку. Точение, фрезеровку и т. д.

Получают детали, например,типа вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, цилиндры, кулачки.
После окончательной термообработки стали 45 (закалка), детали приобретают высокую прочность и износостойкость. Часто шлифуются.

Высокое содержание углерода (0,45%) обеспечивает хорошую закаливаемость и соответственно высокую твёрдость поверхности и прочность изделия. Сталь 45 калят «на воду». То есть после калки деталь охлаждают в воде.

Читайте также:  Особенности метода аргоновой сварки, его плюсы и минусы

После олаждения деталь подвегается низкотепмературному отпуску при температуре 200-300 градусов Цельсия. При такой термообработки стали 45 получают твердость порядка 50 HRC.

Термообрабтка стали 45 и применение изделий: Кулачки станочных патронов, согласно указаниям ГОСТ, изготовляют из сталей 45 и 40Х. Твёрдость Rc = 45 -50. В кулачках четырёхкулачных патронов твёрдость резьбы должна быть в пределах Rс = 35-42. Отпуск кулачков из стали 45 производится при температуре 220-280°, из стали 40Х при 380-450° в течение 30-40 мин.

Расшифровка марки стали 45: марка 45 означает, что в стали содержится 0,45% углерода,C 0,42 – 0,5; Si 0,17 – 0,37;Mn 0,5 – 0,8; Ni до 0,25; S до 0,04; P до 0,035; Cr до 0,25; Cu до 0,25; As до 0,08.

Термообработка стали 40Х

Термообработка стали 40Х – легированная конструкционная сталь предназначена для деталей повышенной прочности такие как оси, валы, вал-шестерни, плунжеры, штоки, коленчатые и кулачковые валы, кольца, шпиндели, оправки, рейки, губчатые венцы, болты, полуоси, втулки и прочих деталей повышенной прочности. Сталь 40Х также часто используется для производства поковок, штампованных заготовок и деталей трубопроводной арматуры. Однако последние перечисленные детали нуждаются в дополнительной термической обработке, заключающейся в закалке через воду в масле или просто в масле с последующим отпуском в масле или на воздухе.

Расшифровка марки стали 40Х. Цифра 40 указывает на то, что углерод в стали содержится в объеме 0,4 %. Хрома содержится менее 1,5 %.

Помимо обычных примесей в своем составе имеет в определенных количествах специально вводимые элементы, которые призваны обеспечить специально заданные свойства.

В качестве легирующего элемента в данном случае используется хром, о чем говорит соответствующая маркировка.

Термообработка стали 20

Термообработка стали 20 – сталь конструкционная углеродистая качественная. Широкое применение в котлостроении, для труб и нагревательных трубопроводов различного назначения, кроме того промышленность выпускает пруток, лист. Температура начала ковки стали 20 составляет 1280° С, окончания – 750° С, охлаждение поковки – воздушное.

Сталь 20 нефлокеночувствительна и не склонна к отпускной способности.

После цементации и цианирования из стали 20 можно изготавливать детали, от которых требуется высокая твёрдость поверхности и допускается невысокая прочность сердцевины: кулачковые валики, крепёжные детали, шпиндели, звёздочки, шпильки, вилки тяг и валики переключения передач, толкатели клапанов, валики масляных насосов.

Сталь 20 применяют для производства малонагруженных деталей ( пальцы, оси, копиры, упоры, шестерни ), цементуемых деталей для длительной и весьма длительной службы (эксплуатация при температуре не выше 350° С), тонких деталей, работающих на истирание и другие детали автотракторного и сельскохозяйственного машиностроения.

Термообработка стали 30хгса

Термообработка стали 30хгса – относится к среднелегированной конструкционной стали.

 Сталь 30хгса проходит улучшение – закалку с последующим высоким отпуском при 550-600 °С, поэтому применяется при создании улучшаемых деталей (кроме авиационных деталей это могут быть различные корпуса обшивки, оси и валы, лопатки компрессорных машин, которые эксплуатируются при 400°С, и многое другое), рычаги, толкатели, ответственные сварные конструкции, работающие при знакопеременных нагрузках, крепежные детали, работающие при низких температурах.
Сталь 30хгса обладает хорошей выносливостью, отличными показателями ударной вязкости, высокой прочностью. Она также отличается замечательной свариваемостью.

Сварка стали 30хгса тоже имеет свои особенности. Она осуществляется с предварительным подогревом материала до 250-300 °С с последующим медленным охлаждением. Данная процедура очень важна, поскольку могут появиться трещины из-за чувствительности стали к резким перепадам температуры после сварки.

Поэтому по завершении сварных работ горелка должна отводиться медленно, при этом осуществляя подогрев материала на расстоянии 20-40 мм от места сварки. Также, не более, чем спустя 8 часов по завершении сварки сварные узлы стали 30ХГСА нуждаются в закалке с нагревом до 880 °С с последующим высоким отпуском. Далее изделие охлаждается в масле при 20-50 °С.

Отпуск осуществляется нагревом до 400 – 600 °С и охлаждением в горячей воде. Сварку же необходимо выполнять максимально быстро, дабы избежать выгорания легирующих элементов.

После прохождения термомеханической низкотемпературной обработки сталь 30хгса приобретает предел прочности до 2800 МПа, ударная вязкость повышается в два раза (в отличии от обычной термообработки стали 30хгса), пластичность увеличивается. 

Термообработка стали 65г 

Термообработка стали 65г – Сталь конструкционная рессорно-пружинная.

Используют в промышленности пружины, рессоры, упорные шайбы, тормозные ленты, фрикционные диски, шестерни, фланцы, корпусы подшипников, зажимные и подающие цанги и другие детали, к которым предъявляются требования повышенной износостойкости, и детали, работающие без ударных нагрузок. (заменители: 70, У8А, 70Г, 60С2А, 9ХС, 50ХФА, 60С2, 55С2).

Термообработка стали 40 – Сталь конструкционная углеродистая качественная. Использование в промышленности: трубы, поковки, крепежные детали, валы, диски, роторы, фланцы, зубчатые колеса, втулки для длительной и весьма длительной службы при температурах до 425 град.

Термообработка стали 40хн – Сталь конструкционная легированная Использование в промышленности: оси, валы, шатуны, зубчатые колеса, валы экскаваторов, муфты, валы-шестерни, шпиндели, болты, рычаги, штоки, цилиндры и другие ответственные нагруженные детали, подвергающиеся вибрационным и динами ческим нагрузкам, к которым предъявляются требования повышенной прочности и вязкости. Валки рельсобалочных и крупносортных станов для горячей прокатки металла.

Термообработка сталь 35 – Сталь конструкционная углеродистая качественная. Использование в промышленности: детали невысокой прочности, испытывающие небольшие напряжения: оси, цилиндры, коленчатые валы, шатуны, шпиндели, звездочки, тяги, ободы, траверсы, валы, бандажи, диски и другие детали.

Термообработка стали 20Х13 – Сталь коррозионно-стойкая жаропрочная.

Использование в промышленности: энергетическое машиностроение и печестроение; турбинные лопатки, болты, гайки, арматура крекинг-установок с длительным сроком службы при температурах до 500 град; сталь мартенситного класса Сталь марки 20Х13 и другие стали мартенситного класса: жаропрочные хромистые стали мартенситного класса применяют в различных энергетических установках, они работают при температуре до 600° С. Из них изготовляют роторы, диски и лопатки турбин, в последнее время их используют для кольцевых деталей больших толщин. Существует большое количество марок сталей данного класса. Общим для всех является пониженное содержание хрома, наличие молибдена, ванадия и вольфрама. Они эффективно упрочняются обычными методами термообработки, которая основана на у – a-превращении и предусматривает получение в структуре мартенсита с последующим улучшением в зависимости от требований технических условий. (заменители: 12Х13, 14Х17Н2)  

Подробнее …

Индукционная термообработка – нагрев стали (сплава металла) до требуемой температуры с последующей выдержкой или охлаждением с целью придания металлу определенной структуры и свойств.

При использовании индукционной термообработки – улучшается характеристика материала, позволяет применять сплавы металлов с более совершенным составом, что позволяет облегчить производство и сделать его более выгодным.

Cовершенный состав у сплавов металлов, позволяют расширить область их применений, поэтому индукционная термообработка широко применяется во всех областях промышленности, связанных с обработкой металлов и их сплавов.

 Наиболее эффективный способ для упрочнения металлов является индукционная термообработка.

Применение индукционной термообработки

Технология процесса индукционной термообработки – нагревание металлов до определенной температуры с последующей выдержкой или охлаждением в жидкой среде (или на воздухе). Индукционная термообработка улучшает характеристики металлов, продлевает срок эксплуатации деталей, уменьшает массу и габариты металлических изделий, увеличивает значения допустимых напряжений.

Но основное преимущество индукционной термообработки для стальных сплавов и других сплавов железа является уменьшение их износ и увеличение долговечности.

В отраслях машиностроения индукционная термообработка используется для – деталей – шестерен – валов – втулок – зубчатых колёс – труб – болтов – шпилек – гаек, различных стальных заготовок и инструмента.

Индукционная термообработка подразделяется на виды: отжиг, индукционная пайка, индукионный отпуск, индукционная плавка, индукционный нагрев под ковку и штамповку, индукционной напайка пластин из твёрдого сплава и т. п.

Виды индукционной термообработки:

Нагрев перед ковкой – индукционная термообработка сталей – прутки –  болванки – бруски – балки – рукоятки – заготовки, обработка различных металлов нагретых до ковочной температуры.

Отжиг – индукционная термообработка сталей – труб, сварных соединений, лезвия ножей, проволок, заключающийся в нагреве их до определённой температуры, выдержке и последующем, обычно медленном, охлаждении при отжиге улучшается структура металла, однородность, снимается внутренние напряжения, что позволяет облегчить обрабатываемость материала.

Закалка – индукционная термообработка сталей – шестерени – валы – зубчатые колёса – клапана – кольца, заключающийся в их нагреве вышекритической температуры с последующим быстрым охлаждением (чаще всего охлаждение осуществляется в воде, масле или воздухе), это приводит к получению мартенситной структуры, что дает поверхности материала твердость.

Отпуск – индукционная термообработка сталей – болты – шпильки – гайки – валы – штанги, заключающийся в термической обработке закалённого на мартенсит материала, при которой основными процессами являются распад мартенсита, что предает материалу вязкость, пластичность, упругость и снижает хрупкость.

Пайка – индукционная термообработка металлов – медных труб – резцов – кольца – провода – стержни заключающийся в процессе нагрева где два или более объекта соединяются друг с другом с помощью другого металлического сплава с более низкой температурой плавления.

Преимущества индукционной термообработки:

  1. Индукционный нагрев за короткое время;
  2. Получения хороших механических свойств детали (заготовки);
  3. Минимальное окисление и окалины слоя;
  4. Индукционная термообработка любых деталей, заготовок, поверхностей;
  5. Минимальная деформация детали (заготовки);
  6. Минимальные энерго и трудозатраты.

Подробнее …

Индукционный отжиг – это вид термической обработки металлов и сплавов металлов, заключающийся в нагреве до определённой температуры, выдержке и последующем, обычно медленном, охлаждении. Индукционный отжиг осуществляет процессы возврата (отдых металлов), рекристаллизации и гомогенизации.

Индукционный отжиг проводят для снижение твёрдости для повышения обрабатываемости, а так же индукционный отжиг улучшает структуру и достижение большей однородности металла, снятие внутренних напряжений образовавшихся в металле при литьё или в процессе обработки давлением.

Подробнее …

Индукционный нагрев перед ковкой – это высокотемпературная обработка различных металлов нагретых до ковочной температуры.

Индукционная ковка или индукционный нагрев перед ковкой, подразумевает под собой использование технологии индукционного нагрева и этот способ позволяет нагреть заготовку за максимальное короткое время, с минимальными энерго- и трудозатратами для последующей пластической деформацией.

Подробнее …

Индукционная закалка – это один из видов термической обработки сталей, основана на физическом явлении, суть которого заключается в том, что электрический ток высокой частоты (ТВЧ), проходя по проводнику (индуктору), создает вокруг него электромагнитное поле. На поверхности металлической детали, помещенной в это поле, индуцируются вихревые токи, вызывая нагрев металла до высоких температур. Это обеспечивает возможность протекания фазовых превращений, т.е. превращение перлита в аустенит.

Подробнее …

Индукционная пайка – это процесс нагрева где два или более объекта соединяются друг с другом с помощью другого металлического сплава с более низкой температурой плавления. Место спайки образует прочную связь между спаеваемыми объектами. Индукционная пайка позволяет соединять все токопроводящие материалы такие как сталь, медь, алюминий, твердые сплавы и др.

Индукционная пайка осуществляют преимущественно на высокочастотных индукционных установках, предназначенных для плавки и закалки.

Подробнее …

Индукционный кузнечный нагреватель без которого не сможет обойтись не одно производство связанное с нагревом металла перед кузнечной обработкой (ковка, штамповка, гибка).
На сайте представлены индукционные кузнечные нагреватели серии ИКН, модели от ИКН-35 с диаметром обрабатываемой заготовки 16-22 мм и до серия ИКН-200 с диаметром обрабатываемой заготовки от 40-80 мм. Производительность по нагреву сталь до 1200 oС с 60 до 400 кг/час. Медь до 700 oС cо 105 до 645 кг/час. Алюминий до 500 oС с 87 до 500 кг/час.

Многие производства уже сменили электрические и газовые печи на индукционные кузнечные нагреватели так как у кузнечных нагревателей есть неоспоримые преимущества.

Подробнее …

Новое поколение преобразователей частоты – среднечастотные индукционные нагреватели модели СЧ-15В – СЧ-25В – СЧ-35В – СЧ-45В – СЧ-70В – СЧ-90В – СЧ-110В – СЧ-160В – представляет собой электромагнитное оборудование для глубокого индукционного нагрева заготовок (в основном валов, шестерен, труб и.т.д.), пайки больших деталей и плавки металлов индукционными токами.

Подробнее …

Высокочастотный индукционный нагреватель – это электромагнитное устройство для нагрева индукционными токами, которые возбуждаются в металле нагревательного элемента переменным магнитным полем. С электротехнической точки зрения, индукционный электронагреватель представляет собой трансформатор, состоящий из первичной обмотки и специальной вторичной обмотки в виде труб.

Металл нагревательного элемента под воздействием магнитного поля, создаваемого катушками, нагревается и передает тепло теплоносителю, которым может быть в различных случаях вода, масло, антифриз, газы, сыпучие, несыпучие вещества и т.д..

Подробнее …

Подписаться на этот канал RSS

Источник: http://xn--80aafddgcctbhpvrdabo8b4bh1e8f.xn--p1ai/index.php/o-kompanii/itemlist/user/724-superuser.html

Ссылка на основную публикацию
Adblock
detector