Изготовление и использование сварочного флюса

Применение сварочного флюса, принцип работы, классификация и процесс получения

Изготовление и использование сварочного флюса

В процессе электродуговой и газовой сварки высокотемпературная зона значительно увеличивает химическую активность, вследствие чего интенсивно окисляется металл, испаряется часть материала сварочной проволоки, снижается интенсивность металлургических процессов, из-за чего плавление оказывается не особо эффективным. С увеличением продолжительности сварки в ванночке скапливается все больше шлаков. Поэтому эта зона должна быть изолирована, что достигается использованием сварочных флюсов — неметаллических композиций с определенными свойствами.

Сварочная зона при установившемся процессе включает такие области:

  • Зона дугового столба с температурой внутри 4000−5000 °С.
  • Зона газового пузыря, образующаяся вследствие интенсивного испарения атомов в кислородной среде.
  • Шлаковый расплав, который легче металла и находится вверху газовой полости.
  • Расплавленный металл — внизу полости.
  • Шлаковая корка, образующая верхнюю, твердую границу зоны сварки.

На поведение свариваемого материала влияет и сварочная проволока. Так, любая сварка представляет собой миниатюрный металлургический процесс.

От шлаковой корки и окисления, которые ухудшают качество шва, свариваемый металл обезопасить можно путем непрерывной подачи в сварочную зону легкоплавких и одновременно химически инертных компонентов, коими и являются флюсы для сварки. Материалы могут применяться и для поверхностной наплавки. С использованием флюса снижается количество пыли, непременно образующейся в процессе работы.

Использоваться данные материалы должны при следующих условиях:

  • Флюс должен не снижать производительность, а стабилизировать процесс.
  • Не должно быть химической реакции флюса с основным металлом, сварочной проволокой.
  • На протяжении рабочего цикла зона сварочного пузыря должна быть изолированной от окружающей среды.
  • По окончании процесса остатки, связываясь с коркой шлака, должны без труда удаляться из рабочей зоны. Причем до 80% отработанного материала после очистки может использоваться снова.

Поскольку эти требования можно назвать даже противоречивыми, оптимальный состав флюса и способ его подачи определяется конкретным видом сварки, конфигурацией соединяемых деталей и производительность процесса.

Классификация сварочных флюсов

Разновидности флюсов характеризуются такими параметрами:

  • Внешним видом. Бывают порошковидными, зернистыми, газовыми, в виде пасты. К примеру, для наплавки или электросварки используется порошок или мелкие гранулы (причем у материала должна быть соответствующая электропроводность). Для пайки или газосварки лучше взять пасту, порошок или газ.
  • Химическим составом. Требуется химическая инертность при высоких температурах и способность к эффективной диффузии ряда компонентов в металл шва.
  • Способом получения. Плавящиеся и неплавящиеся. Первые эффективны при наплавке, когда поверхность металла должна эффективно дополнять иные химические элементы. Вторая группа служит для улучшения механических показателей готового шва, поэтому они используются, когда варят высокоуглеродистые стали и цветные металлы, к примеру, алюминий, плохо сваривающийся в обычных условиях.
  • Назначением. Легированная сварочная проволока с флюсом, к примеру, позволяет улучшить химический состав и повысить механическую прочность исходного металла. Высоко ценятся универсальные флюсы, которые могут использоваться для сварки стали, цветных металлов и сплавов.

Типовые составляющие — это марганец и кремнезем, но с целью легирования могут включаться металлы и ферросплавы.

Классификацию часто производится по марке. Определяется она производителем. Например, марки, разработанные Институтом электросварки им. Патона, в обозначении обязательно имеют литеры A. H. Если наличествуют буквы ФЦ, значит, флюс разработало Центральное НИИ транспортного машиностроения. Хоть рецептура изготовления материалов стандартизирована, единой маркировки не существует.

Процесс получения и химический состав

Основа неплавленых флюсов керамическая, а получаются эти материалы путем механического измельчения компонентов на шаровых мельницах. В зависимости от размера фракций флюсы делятся на мелкие (с зерном 0,25−1,0 мм) и нормальные (с зерном размером до 4 мм).

Первые используются при сварке проволокой малых диаметров, не более 1,0−1,5 мм, в обозначение добавляется буква М.

При значительном количестве компонентов в неплавленом флюсе они предварительно связываются склеиванием, а потом уже частицы размалываются до нужного размера.

В неплавленых флюсах, кроме кремнезема, есть ферросплавы, марганцевая руда, оксиды ряда элементов, металлические порошки. Компоненты подбираются по способности усиливать металлургический процесс в зоне сварки.

В итоге улучшаются условия для поверхностного легирования и раскисления металла, зернистость сварного шва становится мельче, а количество вредных примесей в нем уменьшается.

Легирующие способности неплавленых материалов позволяет использовать более дешевую сварочную проволоку.

К недостаткам неплавленых флюсов относится, к примеру, то, что их упаковка должна быть плотнее, поскольку компоненты гигроскопичны, а влага ухудшает качество материала. Неплавленые флюсы к соблюдению технологии сварки требовательнее, так как при этом существенно могут измениться условия легирования.

Магнитные флюсы тоже относятся к категории неплавленых. Их эффективность подобна керамическим, однако они дополнительно содержат железный порошок, увеличивающий производительность.

Плавленые флюсы главным образом используются при автоматической сварке. Технология их изготовления включает такие этапы:

  1. Подготовка и размол компонентов, кроме использующихся в неплавленых флюсах. Сюда же включается плавиковый шпат, мел, глинозем и пр.
  2. Перемешивание механической смеси во вращающихся мельницах.
  3. Плавка в газопламенных печах с защитной атмосферой или в электродуговых печах.
  4. Гранулирование для приобретения итоговыми фракциями требуемого размера зерен. С этой целью расплав флюса выпускается в воду и затвердевает в ней шарообразными частицами.
  5. Сушка в сушильных барабанах.
  6. Просеивание и упаковка.

Плавленые флюсы состоят из кремнезема SiO2 и оксида марганца. Марганец восстанавливает оксиды железа, постоянно образующиеся при сварке, и связывает серу в шлаках в сульфид, легко удаляющийся впоследствии со сварного шва. Кремний препятствует росту концентрации окиси углерода. Раскисляющие свойства последнего элемента повышают однородность химического состава металла.

Окраска плавленых флюсов прозрачная или светло-желтая, а плотность их не больше 1,6−1,8 г/см3.

Действие флюсов во время сварки

При ручной сварке флюс насыпается 60-миллиметровым слоем на поверхности металла, прилегающего к будущему стыку. При недостаточной толщине слоя возможен непровар и образование раковин и трещин. После этого при электросварке возбуждается разряд, а при газопламенной сварке поджигается горелка.

По мере перемещения электрода флюс подсыпается на новые поверхности. Так как размеры столба в дуге больше высоты флюса, разряд протекает в жидком расплаве компонентов, воздействующих на металлический расплав с удельным давлением до 9 г/см².

В итоге исключается разбрызгивание металла, расходуется меньше сварочной проволоки, растет производительность. Это объясняется способностью флюса использовать более высокие значения рабочего тока без опасений получения прерывистого шва.

Ток силой 450−500 А при открытой сварке невозможно применять, потому что дуга выплескивает металл из ванночки.

При полуавтоматической и автоматической сварке флюсы используются следующим образом:

  1. По специальной трубке флюс подается из бункера.
  2. Позже подается электродная проволока с катушки, расположенной после емкости с флюсом.
  3. По мере протекания рабочего процесса часть флюса, не использованная и связанная шлаками, пневматикой отсасывается в емкость.
  4. Расплавленная и охлажденная шлаковая корка механически удаляется со шва.

Плюсы применения флюсов:

  • Отсутствие необходимости в предварительной разделке кромок будущего шва, так как с большими токами электросварки или повышенной концентрации кислорода при сварке газовой металл плавится гораздо интенсивнее.
  • Отсутствие угара металла в зоне шва и прилегающих поверхностях.
  • Более устойчивая дуга.
  • Повышение КПД источника питания в результате снижения потерь энергии, которая тратится на нагрев металла, разбрызгивание его и повышенного расхода флюса и сварочной проволоки.
  • Комфортные условия труда, ведь значительную часть пламени дуги экранирует флюс.

Ограничение применения в невозможности быстрого осмотра участка выполненной сварки. Данное обстоятельство требует более тщательных подготовительных работ, особенно при соединении сложных по конфигурации деталей. Еще флюсы довольно много стоят, а расходуются практически как сварочная проволока.

Источник: https://tokar.guru/svarka/izgotovlenie-i-ispolzovanie-svarochnogo-flyusa.html

Классификация сварочных флюсов

Чтобы качественно выполнить соединение электродуговой сваркой, необходима сила тока достаточной величины, присадочный материал для заполнения шва, и газовая среда для защиты расплавленного металла от воздействия кислорода из окружающего воздуха. Для реализации последнего условия используют сварочный флюс. Что это такое? Каков функционал этого вещества, и как он классифицируется? Где применяются флюсы для сварки?

Определение и предназначение

Сварочный флюс — это гранулированное средство, подаваемое в зону сварки, непосредственно перед проходом через данный участок плавящегося электрода и зажженной электрической дуги. Вещество похоже на крупнозернистый порошок, бывающий прозрачного, белого, желтого, зеленого или коричневого цвета.

Это средство используется для защиты сварочной ванны от взаимодействия с атмосферой, и препятствия вытеснению углерода из состава основного металла. Некоторые марки флюсов дополнительно обогащают шов укрепляющими связками в виде легирующих элементов.

Используется гранулированное вещество в:

  • электродуговой сварке плавящимся электродом, где последним выступает проволока, подающейся с катушки в горелку;
  • электрическом методе сваривания покрытыми электродами как дополнительное средство;
  • полуавтоматической сварке в среде инертного газа, где порошок находится во внутренней части трубчатой проволоки;
  • газовой сварке пропан-кислородным пламенем на легированных сталях и цветных металлах;
  • электрической сварке угольными электродами.

Функционал гранулированного средства

Сварочные флюсы играют большую роль в обеспечении процесса соединения металлов. Их функции, в зависимости от состава вещества и свариваемого материала, могут заключаться в поддержании четырех действий.

Изоляция

Главной целью флюсов является создание непроницаемого газового облака, позволяющего основному и присадочному металлам беспрепятственно сплавляться в сварочной ванне.

Чтобы порошок выполнял эту функцию необходима правильная дозировка вещества на линии соединения. Хорошими изоляционными газовыми свойствами обладают мелкие гранулы плотной структуры.

Но возрастающая плотность укладки фракций на поверхности соединения отрицательно сказывается на формировании поверхности шва.

На изолирующую способность оказывает влияние не только размер посыпаемых частиц, но и их насыпная масса. Применяя специальные таблицы с данными можно устанавливать точную подачу стекловидного средства в сварочную зону.

Стабилизация

Кроме защитных свойств порошка, позволяющих вести сварочные работы без внешних газовых включений, флюсы создают благоприятную среду для горения электрической дуги, которая проявляется в разряде электрического тока между концом электрода и изделием.

Расстояние между сторонами полюсов составляет около 5 мм. Для стабилизации горения дуги в состав гранул добавляют специальные вещества, позволяющие более устойчиво проходить электрическому разряду.

Это дает возможность работать не только на постоянном, но и на переменном токе, и применять разнообразные режимы сварки.

Легирование

Благодаря воздействию высоких температур и взаимодействию основного и присадочного металлов, создается сварочный шов. Его химический состав зависит от используемых материалов.

Из-за электрической дуги некоторые полезные элементы могут выгорать или передаваться с металла шва в шлаковые массы.

Чтобы этого не произошло, в некоторые флюсы добавляют легирующие вещества, обогащающие шовный металл, и препятствующие насыщению шлака кремнием и марганцем. Для большего легирования используют соответствующую присадочную проволоку.

Формирование поверхности

Когда кристаллическая решетка в расплавленном металле только начинает образовываться, все, что соприкасается с ней, оказывает влияние на вид будущего шва. Флюсы, благодаря различной степени вязкости и межфазного натяжения, имеют сильные формирующие способности, благоприятно сказывающиеся на сварочном соединении.

Например, при работе на большой силе тока и толстых материалах, более практичны флюсы с долгим вязким состоянием. Такие порошки называют «длинными».

Это позволяет глубоко прогретому сплаву постепенно кристаллизоваться и остыть, образуя гладкочешуйчатую структуру.

Для сварки на малых токах, сильная жидкотекучесть будет мешать видеть сварочную ванну и качественно выполнять процесс, поэтому здесь применяются «короткие» флюсы, у которых вязкость быстро переходит в твердое состояние при снижении температуры.

Читайте также:  Коптильня своими руками: холодное и горячее копчение

Классификация

Классификация сварочных флюсов имеет четыре критерия, которые разделяют присадочное средство. Заключаются они в следующих пунктах:

  • назначение флюса;
  • способ его изготовления;
  • структура и физические параметры;
  • химический состав.

Назначение

В зависимости от состава и свойств гранулированного средства, оно может быть применено для обеспечения сварочных процессов в работе с углеродистыми, легированными и цветными металлами. Его используют для электродуговой, газовой и электрошлаковой сварки, а также работах с неплавящимися электродами. Некоторые классы флюсов взаимозаменяемы.

Так, флюс для сварки алюминия, может быть использован и для создания соединений на легированных сталях. В его состав входят натрий, калий и литий, которые будут положительно сказываться и на других металлах. «Алюминиевый» флюс хорошо подойдет для сварки угольными электродами.

Другие гранулированные смеси узко специализированны и не пригодны для широкого применения.

Способ изготовления

В промышленности имеются три способа производства флюса:

  • Плавленные. Для этого применяют электрические или угольные печи. Компоненты шихты разогревают до жидкого состояния и, сплавляясь, образуют полезную смесь. Брикеты и комки материала разбиваются до мелких частей. В готовом виде такие порошки имеют мелкодисперсную структуру серого цвета.
  • Механические смеси. Это соединение нескольких видов флюса в один состав путем физического перемешивания гранул между собой. Технология применяется для конкретных видом металлов. Постоянного состава не существует, а изготовление производится на заказ. Имеет существенный недостаток в виде разности веса и размера частиц, что приводит к их разделению при транспортировке и подаче из бункера.
  • Керамические. Соединение образовывается за счет скрепления порошкообразных веществ клеем, в роли которого выступает жидкое стекло. Альтернативным методом является спекание без сплавления. Компоненты шихты разогреваются до слипания в комки. После остывания они проходят процедуру измельчения. Благодаря недопущению сплавления сохраняются легирующие вещества.

Структура и параметры

Внешний вид и физическое строение порошкообразных средств для сварки может отличаться. Наиболее распространенными являются стекловидные зерна. Они имеют прозрачный цвет и круглую структуру. Отличаются более высокой насыпной массой, поэтому плотно укрывают соединение, защищая его от внешней среды.

Вторая категория флюсов создается в виде пемзообразного вещества. Это пенистые гранулы овальной или круглой формы. Цвет может варьировать от белого до коричневого. Порошок, из-за легкого веса, требует более высокого слоя присыпания соединения.

Химический состав

Из компонентов, входящих в состав порошкообразного вещества для присыпки сварного соединения, выделяются низкокремнистые смеси, где оксида последнего содержится меньше 35%. При этом участие марганца граничит на уровне 1%. Вторая группа — это флюсы с высоким содержанием оксида кремния, которое начинается от 35%. Третья категория называется бескислородной.

Отличаются флюсы и по степени взаимодействия с основным и присадочным металлами. Пассивные смеси только создают газовое облако, но никак не воздействуют на химический состав стали.

Слаболегирующие порошки — это категория флюсов, производимая путем плавления, которые снабжают свариваемые материалы небольшим количеством кремния, марганца, и других полезных включений. Это придает шву большую прочность и ударную вязкость.

Легирующие гранулированные составы обогащают металл в значительной степени, улучшая его физические и химические свойства. Швы после такой сварки лучше сопротивляются коррозии.

Обозначения

Флюс, используемый в ручной дуговой сварке, должен не мешать формированию шва, обеспечивать стабильное горение электрической дуги, и предотвращать образование дефектов в виде трещин и пор в застывающей структуре соединения.

Во время плавления нижнего слоя порошка требуется минимальное выделение вредных веществ, угрожающих дыхательной системе сварщика.

После окончания горения дуги, корка над швом должна легко отделяться, а гранулированное средство иметь низкую стоимость ввиду больших объемов выполняемых сварочных работ.

Все это нашло отображение в таблице обозначений типов флюса, чтобы пользователи могли легко ориентироваться и приобретать необходимое вещество для конкретного вида работ.

Символ обозначения Тип средства
MS Марганец-силикатный
FB Флюоритно-основной
CS Кальций-силикатный
AR Алюминатно-рутиловый
AB Алюминатно-освновной
W Другие типы

Нормативы по применению

В зависимости от выполняемых сварочных работ определяется количество и иные факторы задействования флюса. Это происходит по следующей таблице:

Сила тока, А Высота слоя присыпки, мм Грануляция частиц, мм
200-400 25-35 0,25-1,2
600-800 35-40 0,4-1,6
1000-1200 45-60 0,8-2,5

В зону сварки флюс подается предварительной ручной присыпкой, либо автоматически из специального бункера. Недостатком метода считается возможность вести сварочные работы только в нижнем положении. Но для сварки труб решение нашлось в прокручивании изделия, а не головки горелки. При использовании трубчатой порошковой проволоки сварку можно проводить в любом пространственном положении.

Применение этого относительно недорогого гранулированного вещества значительно улучшает качество сварки, защищая процесс горения дуги, и содействуя образованию прочного соединения.

Поделись с друзьями

1

1

Источник: https://svarkalegko.com/materials/svarochnye-flyusy.html

Каталог статей

Взаимодействуя в процессе сварки с жидким металлом, расплавленный флюс в значительной степени определяет химический состав металла, а следовательно, и его механические свойства.

По способу изготовления флюсы делятся на плавленые и неплавленые.

Плавленые флюсы

Плавленые флюсы являются основными при автоматической сварке металла.

Флюсы типов АН-348-А, АН-348-АМ, АН-348-В, АН-348-ВМ, ОСЦ-45, ОСЦ-45М, АН-60 и ФЦ-9 предназначены для механической сварки и наплавки углеродистых и низколегированных сталей углеродистой и низколегированной сварочной проволокой.

Флюс марки АН-8 применяют при электрошлаковой сварке углеродистых и низколегированных сталей и сварке низколегированных сталей углеродистой и низколегированной сварочной проволокой.

Флюсы марок АН-15М, АН-18, АН-20С, АН-20СМ и АН-20П служат для дуговой автоматической сварки и наплавки высоколегированных сталей и среднелегированных сталей. Флюс марки АН- 22 предназначен для электрошлаковой сварки и дуговой автоматической наплавки и сварки низко- и среднелегированных сталей.

Флюсы АН-26С, АН-26СП и АН-26П применяют при автоматической и полуавтоматической сварках нержавеющих, коррозионностойких и жаропрочных сталей. Флюсы марок АН-17М, АН-43 и АН-47 предназначены для дуговой сварки и наплавки углеродистых, низко- и среднелегированных сталей повышенной и высокой прочности.

Нормальные флюсы содержат зерна размером 0,35-3 мм. Флюсы мелкой грануляции состоят из зерен размером 0,25-1,0 мм и в обозначении марки имеют конечную букву М.

Плавленые флюсы получают сплавлением его составляющих компонентов. Изготовление флюса включает следующие процессы: размалывание до необходимых размеров сырьевых материалов (марганцевая руда, кварцевой песок, мел, плавиковый шпат, глинозем и др.

); перемешивание их в определенных массовых соотношениях; плавка в газопламенных или электродуговых печах; грануляция с целью получения флюса определенных размеров зерен. Грануляция производится выпуском расплава флюса в воду, где он остывает и растрескивается на мелкие частицы.

Затем флюс сушат в барабанах или сушильных шкафах и просеивают через сито на фракции.

В состав этих флюсов в качестве основных компонентов входят марганец в виде оксида марганца и кремний в виде кремнезема. Марганец, обладая большим сродством к кислороду, восстанавливает содержащиеся в наплавляемом металле оксиды железа. Кроме того, образуя сульфид MnS, марганец способствует удалению серы в шлак.

При сварке низкоуглеродистых и низколегированных сталей высокомарганцовистые флюсы легируют металл шва. Кремний способствует снижению пористости металла шва, так как подавляет процесс образования оксида углерода, который является одной из основных причин образования пор в наплавленном металле.

Кремний также является хорошим раскислителем, но как легирующий элемент при сварке под флюсом имеет ограниченное применение.

Неплавленые флюсы

Неплавленые флюсы представляют собой механическую смесь составляющих его материалов. Исходные материалы (кремнезем, марганцевую руду, плавиковый шпат, ферросплавы и др.

) дробят, измельчают, дозируют и полученную смесь тщательно усредняют. Затем замешивают в строго определенных соотношениях с водным раствором жидкого стекла и, пропустив через гранулятор, получают шарообразные гранули.

Сырые гранули поступают на сушку и прокалку.

Отсутствие плавки позволяет вводить в состав флюсов различные ферросплавы, металлические порошки, оксиды элементов и другие материалы.

Эти вещества, участвуя в металлургических процессах сварки, значительно облегчают широкое легирование и раскисление наплавленного металла, улучшают структуру и снижают вредные примеси в металле шва. При этом используется более простая сварочная проволока из обычной низкоуглеродистой стали.

Недостатком неплавленых флюсов является их большая гигроскопичность, требующая герметичности упаковки, и более точного соблюдения режима сварки, так как он оказывает влияние на процесс легирования наплавленного металла.

Используются флюсы марок АНК-35 (для сварки низкоуглеродистых сталей низкоуглеродистой проволокой Св-08 и Св-08А), АНК-46 (для сварки низкоуглеродистых и низколегированных сталей), АНК-47 и АНК-30 (для сварки швов высокой хладостойкости), АНК-45 (для сварки высоколегированных сталей), АНК-40, АНК-18, АНК-19 (для наплавочных работ низкоуглеродистой сварочной проволокой Св-08 и Св-08А). При применении наплавочных проволок эти флюсы дают слои наплавленного металла более высокой твердости. Флюс марки АНК-3, применяемый как добавка к флюсам марок АН-348А, ОСЦ-45, АН-60 повышает стойкость швов против образования пор.

Важным преимуществом неплавленых керамических флюсов является их относительно малая чувствительность к ржавчине, окалине и влаге на поверхности свариваемых кромок деталей по сравнению с плавлеными флюсами. Это особенно важно при строительно-монтажных работах.

Плавленые флюсы при сварке дают относительно небольшое количество легирующих примесей (только за счет восстановления из оксидов кремния и марганца). При этом появляются оксиды, способствующие образованию неметаллических включений, ухудшающих механические свойства металла.

Поэтому для соответствующего легирования металла шва приходится применять дорогую легированную проволоку. Однако высокие технологические свойства плавленых флюсов (хорошая защита зоны сварки, хорошее формирование валиков, отделимость шлака и др.) и меньшая стоимость обеспечивают широкое применение их в сварочном производстве.

При необходимости получения сварных швов высокого качества по ударной вязкости при низкой температуре, швов, стойких против образования пор и трещин, и некоторых других специальных швов керамические флюсы незаменимы.

Магнитные флюсы относятся также к ненлавленым флюсам. По технологии изготовления и применению они аналогичны керамическим флюсам.

Кроме веществ, входящих в состав керамических флюсов, магнитный флюс содержит железный порошок, который не только придает ему магнитные свойства, но и способствует повышению производительности сварки. Флюс подается через сопло дозирующим устройством автомата (или полуавтомата).

Под действием магнитного поля сварочного тока флюс притягивается к зоне сварки. При этом обеспечивается минимальный расход флюса и возможность качественной сварки вертикальных швов.

Илья Мельников
Технология ручной дуговой сварки

Источник: http://www.sibelektrod.ru/publ/3-1-0-102

Флюс для сварки: назначение, виды сварки, состав флюса, правила использования, требования ГОСТ, плюсы и минусы применения

Качество сварного шва определяется не только способностями мастера правильно организовать дугу, но и специальной защитой рабочей зоны от внешних воздействий. Главным врагом на пути к созданию прочного и долговечного металлического соединения является естественная воздушная среда.

Изоляцию шва от кислорода обеспечивает флюс для сварки, но не только в этом заключается его задача. Различные конфигурации состава этой добавки с сочетанием защитной газовой среды позволяют по-разному управлять параметрами шовного соединения.

Читайте также:  Ремонт сварочных инверторных аппаратов своими руками

Назначение флюса

Сварочный расходник данного типа направляется в зону горения и в зависимости от характеристик своего расплава оказывает защитно-модифицирующее воздействие на участок формирования шва. В частности, материал может выполнять следующие функции:

  • Создание шлаковой и газовой изоляции для сварочной ванны.
  • Наделение сварного соединения определенными технико-физическими свойствами.
  • Поддержание стабильности горения дуги. Перенос электродного металла (или проволочного расплава) в зону сварки.
  • Устранение нежелательных примесей в шлаковой прослойке.

Если говорить о совместимости разных флюсов для сварки с металлами, то наиболее распространенные марки имеют следующие назначения:

  • ФЦ-9 – стальные углеродистые сплавы с низким легированием.
  • АН-18 – стальные сплавы высокого легирования.
  • АН-47 – низко- и среднелегированные стали, характеризующиеся высокими прочностными показателями.
  • АН-60 – стали низкого легирования, используемые в трубопроводах.
  • ФЦ-7 – используется при сварке низкоуглеродистой стали на токе большой силы.
  • ФЦ-17 – гранецентрированное высокотемпературное железо.
  • ФЦ-19 – сплавы с повышенным содержанием хрома.
  • ФЦ-22 – применяется для выполнения углового шовного соединения в работе с легированными углеродистыми сталями.
  • 48-ОФ-6 – задействуется в техниках сварки с подключением высоколегированной электродной проволоки.

Составы флюса

Сам по себе флюс, как правило, выпускается в виде гранулированного порошка с фракцией порядка 0,2–4 мм. Но наполнение и происхождение данного продукта может быть очень разным и не всегда однородным. В связи с этим выделяют следующие виды флюса для сварки:

  • Оксидные. Большую часть в содержании составляют металлические оксиды и примерно на 10% приходится доля фторидных элементов. Такой флюс используется для работы с низколегированными и фтористыми стальными сплавами. Также в зависимости от содержания оксидные флюсовые составы делятся на бескремнистые, низкокремнистые и высококремнистые.
  • Солеоксидные. Еще такие порошки называют смешанными, так как наполнение может в равной степени формироваться оксидами и солевыми соединениями. Используется такой флюс для обработки легированной стали.
  • Солевые. Вовсе исключается наличие оксидов, а основу состава образуют фториды и хлориды. Целевое назначение солевого флюса – электрошлаковый переплав и сварка активных металлов.

Технология изготовления флюса

В процессе изготовления основа для флюса (шихта) подвергается нескольким процедурам переработки, в числе которых выплавка, грануляция, формовка и проверка на качество. Сырье шихты перед производственным процессом сегментируется на мелкое, среднее и крупное.

Каждая партия проходит тщательную мойку и сушку, так как чистота и точность в параметрах будущего флюса поддерживаются изначально. Затем выполняют взвешивание, дозировку и смешивание с другими технологическими компонентами.

Выплавка и грануляция флюса для сварки производится на специальном оборудовании – задействуются газопламенные или электродуговые печи, бассейны для обливки холодной водой и металлические поддоны. На финальных этапах обработки выполняется сушка с просеиванием.

Прошедший контроль флюс упаковывается в специальные мешки или ящики с огнеупорными свойствами.

Требования ГОСТа к флюсу

Нормативные требования затрагивают несколько направлений оценки качества флюса, а также регулируют правила обеспечения безопасности при обращении с материалом и методы проведения его испытаний. Что касается основных параметров, то к ним предъявляются следующие требования:

  • Исключаются во флюсовом порошке зерна, размер которых превышает 1,6 мм. Процент их содержания не должен составлять более 3% от всей массы.
  • Допускается производство флюса с фракцией до 0,25 мм, если это условие изначально было оговорено с потребителем.
  • Также по соглашению с потребителем допустимо изготовление материала фракцией зерен от 0,35 до 2,8 мм, но только применительно к марке АН-348-А.
  • Влажность флюсов в зависимости от марки не должна превышать коэффициент от 0,05 до 0,1%.

Что касается требований безопасности, то меры индивидуальной защиты являются главным предметом регуляции ГОСТа. Сварка под флюсом должна выполняться в соответствии с мерами противопожарной безопасности. Отдельно должна контролироваться концентрация применяемого флюсового порошка, который по умолчанию считается химически опасным и производственно вредным.

Плавленый и неплавленный флюс

Содержание плавленого порошка в основном формируют шлакообразующие компоненты. Их вырабатывают в результате сплавления составляющих элементов, среди которых кварцевый песок, марганцевая руда и мел. Путем их смешивания в определенных пропорциях с последующей плавкой в печах можно получить модификатор для шва с определенным набором характеристик.

Более функциональна дуговая сварка под флюсом, произведенным неплавленным способом. Это смесь зернистых и порошковых материалов, которые помимо шлакообразующей основы также включают в состав легирующие элементы и раскислители.

Отсутствие операции плавления дает возможность вводить в состав флюса металлическую пыль и ферросплавы, которые расшифруют возможности улучшения соединений.

Виды сварки под слоем флюса

С применением флюса может выполняться как ручная, так и автоматическая сварка – принципиальная разница будет зависеть от выбранного оборудования. Электродуговая сварка выполняется в режиме саморегуляции или при поддержке автоматического контроля напряжения.

Оптимально использовать инверторные установки, дополненные барабанами для подачи проволоки. Также распространена сварка с флюсом без газа, который по умолчанию выступает в качестве защитной среды от кислорода и азота.

Чем же хороша техника, исключающая этот барьер перед негативными факторами воздействия? Во-первых, при условии выбора подходящего флюса он сможет выполнить весь перечень защитных и вспомогательных задач применительно к формируемому шву. Во-вторых, отсутствие газовой среды облегчает саму организацию процесса.

Не нужно подготавливать баллон с аргонно-углекислотная смесью, а также защищать зону сварки от избыточного термического воздействия при использовании горелки.

Техника применения флюса

После розжига дуги оператор должен ее поддерживать между окончанием электрода и заготовкой именно под слоем флюса. Порошок насыпается слоем 55-60 мм, после чего дугу следует буквально утопить в этой массе, пока она будет плавиться.

При среднем весе флюса его статическое давление на металл может составлять порядка 8-9 г/см кв. Этой величины достаточно для устранения нежелательных механических воздействий на сварочную ванну. При использовании проволоки для сварки с флюсом можно добиться и минимальных показателей разбрызгивания расплава.

Это условие выполняется путем обеспечения стабильного контакта зоны расплава с плавящейся проволокой и флюсом, а также за счет регуляции силы тока. Защита со стороны газа в данном случае тоже не требуется, но контроль мощности будет особенно важен.

Как правило, комбинация проволоки и флюса используется при сварке на токе высокой плотности, поэтому и автомат должен подбираться с учетом поддержки постоянной скорости направления электродной нити.

Плюсы от применения флюса

Использование флюса, безусловно, сказывается на формировании шва наилучшим образом, так как минимизируются негативные факторы рабочего процесса в условиях открытого воздуха.

Из очевидных преимуществ можно отметить снижение дефектов в зоне соединения, минимизацию разбрызгивания и более эффективный контроль дуги со всеми возможностями автоматического регулирования. Что еще очень важно, участок сварка под флюсом всегда виден оператору.

Это позволяет при необходимости своевременно вносить корректировки в процесс, а в некоторых случаях даже обходиться без специальной маски.

Недостатки от применения флюса

Слабые места данной технологии обуславливаются более высокими требованиями к оборудованию, так как для эффективного расплава флюса требуется большая мощность.

Сегодня выпускаются специальные модификации аппаратов для аргонодуговой сварки в среде флюса, имеющие специальную оснастку для его подготовки и подачи. Логично, что такие модели стоят на 15-20% дороже. Еще один недостаток связан с увеличением зоны расплава.

Хотя ее можно контролировать в определенных границах, мелкие элементы точечно обрабатывать в таких условиях проблематично.

Заключение

Флюс как расходный материал, улучшающий качество сварочного процесса, облегчает многие производственные и строительные мероприятия данного спектра. Но и в бытовых условиях его нередко используют на даче, в гараже или просто в ремонтных операциях. Выбирая данный материал для собственных нужд, очень важно не прогадать в оценке качества.

Как отмечает тот же ГОСТ, флюс для сварки должен поставляться на рынке в плотных бумажных мешках от 20 до 50 кг с указанием транспортной маркировки. По специальному заказу можно оформлять и мелкую фасовку, но и для этого должны предусматриваться специальные контейнеры.

Причем взвешивание должно производиться с максимальной погрешностью в 1% относительно общего веса тары.

Источник: http://www.alfamag.pro/poleznoe/svarochnoe-oborudovanie/1052-flyus-dlya-svarki-naznachenie-vidy-svarki-sostav-flyusa-pravila-ispolzovaniya-trebovaniya-gost-plyusy-i-minusy-primeneniya.html

Автоматическая сварка под флюсом, ее особенности

 Отрицательное влияние атмосферного воздуха на процессы, происходящие в сварочной ванне, изучено давно. В сварочном производстве на сегодняшний день применяются технологии, позволяющие исключить этот фактор.

Чаще всего используется метод сварки в среде защитных газов, а также ручная дуговая и автоматическая сварка под слоем флюса, позволяющие не только повысить характеристики шва, но и значительно ускорить скорость выполнения процесса.

Что дает применение флюса

  Флюс — многокомпонентная химическая смесь, предназначенная для получения сварных соединений требуемого качества и защиты расплавленного металла от негативного воздействия кислорода и азота, имеющихся в атмосферном воздухе. Правильно подобранный флюс позволяет решить следующие задачи:

  • Защита расплавленного металла в сварочной ванне.
  • Флюс обеспечивает устойчивость горения сварочной дуги.
  • Снижение энергетических затрат на сварку и предотвращение разбрызгивания металла.
  • Улучшение условий формирования шва.
  • Возможность изменения химического состава сварного шва для получения необходимых качеств соединения.

  Кроме того, сварка флюсом имеет и другие преимущества, она позволяет достичь высокого уровня механизации, возможна комплексная автоматизация сварочных процессов. При этом такая автоматическая линия обеспечивает стабильные показатели качества сварных швов.

  Ради справедливости стоит отметить и недостатки, присущие сварке флюсом.

  • Данный вид сварки может выполняться исключительно в нижнем положении шва.
  • Детали, подвергаемые сварке, должны быть тщательно подогнаны при сборке, требуется качественная подготовка кромок.
  • Сварить изделия под флюсом на весу не получится, необходима предварительная проварка корня шва или наличие жесткой опорной поверхности.
  • Значительная стоимость материалов делает процесс существенно дороже, поэтому сварка флюсом в основном применяется при изготовлении ответственных конструкций.

  Кроме всего прочего флюс является обязательным расходным материалом для сварки алюминия, его сплавов, других цветных металлов.Автоматическая и ручная дуговая сварка без них практически невозможна. Правда здесь основную роль играет слой трудно разрушаемой окиси, которая образуется на поверхности деталей под действием воздуха.

Виды применяемых флюсов

  По своему назначению все выпускаемые флюсы делятся на 3 категории, в зависимости от металла, для сварки которого они предназначены:

  • Углеродистые и легированные стали
  • Высоколегированные стали
  • Цветные металлы, а также их сплавы

  В зависимости от метода изготовления флюс может быть плавленым и керамическим. Первые могут иметь стекловидную или пемзовидную структуру. Вторые представлены в основном керамическими веществами, они обладают легирующими качествами и значительно улучшают структуру шва.

  • Плавленый флюс получается при спекании исходных материалов с последующей грануляцией. Производство данного материала значительно дешевел, кроме того он отличается и технологическими свойствами (формирование шва, защита, легкая отделимость шлака), именно поэтому сварка флюсом в основном выполняется с его применением.
  • Керамический флюс получают измельчением компонентов, смешиванием с жидким стеклом и экструзией, которая способствует дополнительному измельчению и образованию однородного состава. Сварка флюсом с применением таких смесей осуществляется при необходимости дополнительного легирования материала шва.
Читайте также:  Химический состав и классификация сталей по назначению

  По химическому составу флюсы для электрической и газовой сварки можно разделить на следующие группы:

  • Оксидные смеси используются для сварки фтористых и низколегированных сталей. В их состав входят окислы металла с незначительным содержанием (до 10%) фтористых соединений. Такой флюс отличаться различным наличием марганца и кремния.
  • Солевые флюсы содержат в своем составе исключительно хлориды и фториды. С их помощью выполняется дуговая сварка флюсом активных металлов и шлаковый переплав.
  • Смешанный флюс представляет собой комбинацию первых двух категорий. Используется для ответственной сварки легированных сталей.

  Как видите, различных модификаций данного материала существует множество поэтому не имея должного опыта, подобрать его самостоятельно очень тяжело. А автоматическая сварка может быть успешной только в том случае, если применяется соответствующий условиям флюс, поэтому его тип должен быть определен в технической документации на изготовление изделия.

Физическая сущность сварки под флюсом

  Флюс должен покрывать соединяемые изделия определенным слоем, величина которого зависит от толщины металла, при недостаточном его количестве эффективная защита сварочной ванны от воздуха невозможна.

  Энергия дуги приводит к плавлению электродной проволоки, основного металла и часть флюса. При этом в точке сварки формируется полость, которая наполняется газами и парами флюса и металла.

Оболочкой данной полости в верхней части служит не расплавившийся флюс, благодаря чему в ней создается некоторое избыточное давление.

Именно благодаря этому сварка флюсом позволяет защитить дугу и слой расплавленного металла от негативного влияния атмосферного воздуха.

  По мере перемещения сварочной дуги флюс и расплавленный металл кристаллизируются и остывают, шлак, образовавшийся на поверхности шва, достаточно легко удаляется. Повысить производительность сварки флюсом позволяет автоматическая линия, все процессы на которой осуществляются без участия человека.

Технология автоматической сварки под флюсом

  Сварка флюсом по автоматической технологии осуществляется следующим образом. Оборудование, применяемое для сварки под флюсом, устроено так, что оператору необходимо всего лишь выбрать и правильно настроить режимы работы.

  • Флюс автоматически подается на соединяемые детали из предварительно заполненного бункера, при этом высота слоя, как уже говорилось, зависит от толщины металла.
  • Электродная проволока, применяемая для сварки, сматывается в бухты или на кассеты, ее подача в рабочую зону осуществляется специальным механизмом.
  • Электрод, создающий дугу, перемещается вдоль шва со скоростью, которая зависит от того, какие режимы сварки применяются. Образующий флюсовый свод выполняет защиту сварочной ванны и предотвращает разбрызгивание металла.
  • Расплавленный флюс, имеющий более низкую плотность, всплывает на поверхность расплавленного металла, поэтому не ухудшает структуру и качества шва. По мере остывания образовавшаяся корка шлака удаляется с поверхности изделия.
  • Флюс, который не был израсходован, собирается в емкость и может быть использован повторно.

  Подобная технология, применяемая для сварки под флюсом, благодаря высокой механизации и автоматизации процесса обеспечивает высокую скорость сварки, при стабильном качестве. Поэтому она применяется в различных сферах промышленности.

Режимы дуговой сварки под флюсом

  Появление нового оборудования значительно расширила возможные режимы, которые применяются для сварки особо ответственных изделий. Дуговая сварка под флюсом в зависимости от характеристик свариваемых материалов, а также от требований, предъявляемых к качеству изделия, может выполняться с применением различных режимов. Их основными характеристиками являются:

  • Показатели электрического тока (род, сила, применяемая полярность).
  • Напряжение электрической дуги.
  • Диаметр и состав электродной проволоки
  • Скорость выполнения сварки.

Помимо этого учитываются и дополнительные параметры:

  • Какой флюс для сварки применяется, его состав, строение (размеры составляющих частиц, плотность, консистенция).
  • Какой вылет имеет электродная проволока.
  • Взаимное расположение свариваемых деталей и электродов.

  При сварке флюсом большое значение имеет сила тока и скорость выполнения процесса, именно они оказывают огромное влияние на глубину провара шва.

  Для каждого типа изделия режимы должны быть прописаны в техническом задании на изготовление. Если такая информация отсутствует, то они должны подбираться экспериментальным методом. При этом необходимо следовать следующим рекомендациям:

  • Дуговая сварка высокого качества возможна только при стабильном поддержании дуги. Основным условием этого является оптимальное соотношение между силой тока и скоростью подачи проволоки.
  • Сварка флюсом предполагает повышение скорости выполнения работ при увеличении вылета электродной проволоки.
  • При использовании легированных проволок можно применять режимы с повышенной скоростью подачи.
  • На размеры и форму шва оказывают влияние сила тока и напряжение. Сила тока, при которой выполняется дуговая сварка под флюсом, меняет глубину проварки, а увеличение напряжение способно изменить ширину шва.
  • Также экспериментальным путем подбирается и флюс для сварки, применение которого наиболее целесообразно для определенных условий.

Область применения сварки под флюсом

  Применение сварки флюсом с помощью автоматических линий позволяет наладить поточный выпуск различных изделий. Наиболее эффективные результаты подобное оборудование показывает в следующих областях:

  • В судостроении сварка флюсом позволила организовать крупноблочную сборку, в заводских условиях с ее помощью монтируются целые секции кораблей, которые потом монтируются на стапеле.
  • Автоматическая сварка широко применяется при изготовлении резервуаров для нефтехранилищ, высокое качество соединений обеспечивает высокую устойчивость к агрессивным жидкостям.
  • Ярким примером эффективности сварки под флюсом является ее применение в производстве труб большого диаметра. Применяемые в процессе режимы обеспечивают высокое качество и надежность сварных швов, поэтому такие трубы в основном применяются для газопроводов.

  Как видите, дуговая сварка флюсом получила распространение в ответственных производствах, это свидетельствует об эффективности и целесообразности применения такого метода.

  Постоянное совершение технологических линий, усовершенствованные режимы, позволяют открывать новые возможности данного вида. Именно поэтому автоматическая сварка покрытого флюсом металла, наравне с дуговой сваркой в среде защитных газов, является одним из основных методов выполнения работ на производстве.

Источник: http://GoodSvarka.ru/electro/pod-flyusom/

Флюсы сварочные

Рекомендуем приобрести:

Флюс — это неметаллический материал, вводимый в зону сварки, наплавки, пайки для создания защиты ванны, восстановления окислов, разжижения и понижения температуры шлаков, а также для выполнения металлургических функций по получению шва нужного химического состава.

Для дуговой сварки и наплавки флюс обычно зернистый, порошкообразный. Такой же флюс и для электрошлаковой сварки, но с дополнительными спецсвойствами по электропроводности и т. д.

Для газовой сварки и пайки в качестве флюсов применяют пасты, порошки и газ.

Помимо основных функций, флюс при сварке обычно способствует стабилизации горения дуги и улучшению формирования шва, при пайке может уменьшать поверхностное натяжение, улучшать растекаемость припоя.

Флюс получают сплавлением составляющих его компонентов и последующим дроблением (плавленые флюсы) или механическим связыванием (склеиванием) порошкообразных компонентов с последующим измельчением (неплавленые флюсы).

По назначению флюсы разделяют на три группы: для сварки углеродистых и легированных сталей; для сварки высоколегированных сталей; для сварки цветных металлов и их сплавов. Некоторые марки флюсов, предназначенные для сварки металлов одной из этих групп, можно применять для сварки металлов и другой группы.

В зависимости от их химического состава различают флюсы высококремнистые (более 35% кремнезема), низкокремнистые (до 35% кремнезема), безмарганцевые (менее 1% марганца), марганцевые (более 1% марганца).

Изготовляют также легированные флюсы, содержащие чистые легирующие металлы или ферросплавы. Флюсы для автоматической сварки выпускаются по ГОСТ 9087-81.

Флюс с размером зерен от 0,25 до 1,6 мм предназначен для сварки проволокой диаметром до 3,0 мм: с размерами зерен от 0,35 до 3 мм — для сварки проволокой диаметром более 3,0 мм.

Плавленые флюсы изготовляются двух видов: стекловидные (зерна прозрачные, от светло-желтого до бурого и коричневого цвета) и пемзовидные (пористые зерна светлой окраски). Объемная масса стекловидных флюсов, от 1,3 до 1,8 кг/дм3, пемзовидных — не более 1 кг/дм3. Наиболее распространены стекловидные флюсы.

К неплавленым флюсам относятся керамические, которые используются главным образом как легирующие: они малочувствительны к ржавчине, окалине и влаге на кромках свариваемых швов; добавление керамических флюсов к стекловидным позволяет получать швы высокого качества даже при плохой очистке кромок. Назначение флюса:

  • зашита расплавленного металла и зоны дуги от действия кислорода и азота воздуха;
  • стабилизация горения сварочной дуги;
  • легирование металла шва;
  • раскисление расплавленного металла;
  • формирование шва;
  • уменьшение потерь тепла;
  • уменьшение потерь электродного металла на угар и разбрызгивание.

Флюсы должны обеспечивать легкую отделяемость шлака и минимальное количество вредных газов и пыли, выделяющихся при сварке.

По сложившейся традиции, марки флюсов обычно указывают наименование разработчика и порядковый номер флюса. Так, флюсы, разработанные ИЭС им. Е. О. Патона, имеют сериал, обозначенный буквенными индексами «АН» (АН-348-А; АН-20; АН-22 и т. д.), что обозначает — «Академия наук» (в составе которой находится ИЭС им. Патона).

Флюсы, предложенные НПО ЦНИИТМАШ. имеют сериал «ФЦ» — флюсы ЦНИИТМАШ, и т. д. Были попытки ввести индексы, в какой-то степени характеризующие состав флюсов, например, ОФ6 и ОФ10 (основной флюс), КФ16 (кислый флюс), НФ17 (нейтральный флюс).

Однако эта практика до сих пор не получила широкого распространения среди разработчиков флюсов.

Плавленые флюсы получают плавлением исходных материалов (кварцевого песка, марганцевой руды, плавикового шпата каустического магнезита и др.) в электрических или пламенных печах при 1400…1500 °С.

Расплавленная масса выливается тонкой струей в воду и гранулируется, приобретая вид крупки размером 0,25…3 мм. Гигроскопичные флюсы, содержащие большое количество фтористых и хлористых солей, подвергают сухой грануляции.

Расплавленный флюс выливают в металлическую форму, а после остывания дробят в валках до размера 0,1…3 мм.

Для изготовления неплавленых флюсов исходные компоненты измельчают, замешивают на жидком стекле и с целью дополнительного измельчения и получения однородной массы пропускают через экструдер. После сушки и просеивания флюс готов к употреблению.

Наибольшее применение в сварочном производстве получили плавленые флюсы, к преимуществам которых относятся высокие технологические свойства (защита, формирование шва, отделимость шлаковой корки и др.) и малая стоимость.

Для электрошлаковой сварки выбирают флюсы общего назначения (АН-348А, АН-22, 48-ОФ-6, АНФ-5) и предназначенные именно для данного процесса (АН-8 и АН-25). Содержание в этих флюсах оксидов титана обеспечивает их высокую электропроводность в твердом состоянии.

Для сварки меди и ее сплавов можно использовать флюсы ОСЦ-45, АН-348А, АН-20, АН-26.

Преимущество плавленых флюсов перед керамическими — это более высокие технологически свойства (защита, формирование, отделяемость шлаковой корки и др.) и меньшая стоимость. Преимуществом керамических флюсов является возможность в более широких пределах легировать металл шва через флюс. В настоящее время промышленность применяет преимущественно плавленые флюсы.

Высококремнистыми и марганцовистыми флюсами являются флюсы ОСЦ-45 и АН-348А, шихта которых состоит из марганцевой руды (МnО), кварцевого песка (Si02) и плавикового шпата (фтористого кальция CaF2).

Буква А в конце марки флюса обозначает, что грануляция крупная (для автоматической сварки), а буква Ш — мелкая грануляция, т. е.

для использования при полуавтоматической сварке шланговыми полуавтоматами (они применялись на заводах до 70-х годов).

Для автоматической наплавки под флюсом служат те же флюсы, что и для сварки. Наиболее распространены плавленые флюсы АН-348А; ОСЦ-45; АН-20; АН-60; 48-ОФ-6; АН-26; AH-I5M; АН-8; АН-25; АН-22; АНФ-6 в сочетании с легированными проволоками.

Источник: Колганов Л.А. “Сварочное производство”. Ростов-на-дону, 2002. -512с.
Э.С. Каракозов, Р.И. Мустафаев “Справочник молодого электросварщика”. -М. 1992

Источник: https://www.autowelding.ru/publ/1/1/fljusy_svarochnye/11-1-0-62

Ссылка на основную публикацию
Adblock
detector