Как определить толщину изоляции трубы

Ниже представлена краткая методика инженерного расчёта тепловой изоляции трубопровода (трубы). Оптимальную толщину теплоизоляционного слоя находят путём технико-экономического расчёта. Практически толщину слоя изоляции определяют исходя из его термического спротивления (не менее 0,86 [oС • м2/Вт] для труб с Dу 25 мм).

Качество тепловой изоляции трубопровода оценивается её КПД. В современных конструкциях тепловой изоляции при использовании материалов с теплопроводностью до 0,1 [Вт/м • K] оптимальная толщина слоя изоляции обеспечивает тепловую эффективность этой изоляции, близкой к 0,8 (т.е. эффективность 80%).

Приведенная информация может быть полезна для проведения инженерных расчётов при проектировании различных машин и узлов, содержащих трубопроводы с тепловой изоляцией. В качестве примера ниже приведены результаты расчёта тепловой изоляции для выпускного коллектора [трубопровода] высокофорсированного дизеля.

Полное термическое сопротивление изоляционной конструкции для цилиндрической стенки трубопровода (трубы) определяется по формуле:

Как определить толщину изоляции трубы

  • где
  • dиз – искомый наружный диаметр стенки изоляции трубопровода.
  • dн – наружный диаметр трубопровода.
  • λиз – коэффициент теплопроводности изоляционного материала.
  • αв – коэффициент теплоотдачи от изоляции к воздуху.

Как определить толщину изоляции трубы

  1. где
  2. tн – температура наружной стенки трубопровода.
  3. tиз – температура поверхности изоляции.

Температура внутренней стенки изоляции трубопровода

Как определить толщину изоляции трубы

  • где
  • dв – внутренний диаметр трубопровода.
  • αг – коэффициент теплоотдачи от газа к стенке.
  • λт – коэффициент теплопроводности материала трубопровода.

Как определить толщину изоляции трубы

из которого определяется искомый наружный диаметр изоляции трубопровода dиз, и далее толщина изоляции этого трубопровода (трубы) вычисляется по формуле:

Как определить толщину изоляции трубы

Пример: Необходимо рассчитать тепловую изоляцию трубопровода высокофорсированного дизеля, наружный диаметр выпускного трубопровода составляет 0,6 м, внутренний диаметр этого трубопровода составляет 0,594 м, температура наружной стенки трубопровода принимается равной 725 К, температура наружной поверхности изоляции принимается равной 333 К, теплопроводность изоляционного материала принимается равной 0,11 Вт/(м К), тогда проведенный расчет изоляции трубопровода по методике, описанной выше, покажет, что толщина необходимой изоляции трубопровода должна составлять не менее 0,1 м.

???? Калькуляторы расчета объема теплоизоляции труб, отводов

С помощью данных калькуляторов вы получите возможность легко рассчитать объем теплоизоляции трубопровода и отводов «в деле», а так же площадь покровного слоя.

Тем самым вы сможете определить объем работ, а так же определить количество необходимых материалов. Обратите внимание на то, что объем теплоизоляции считается без учета отходов (обрезков и т.п.).

Теплоизоляцию трубопроводов и деталей (отводы, тройники) и оборудования производят в соответствии с СП 61.13330.2012 (Актуализированная редакция СНиП 41-03-2003)

Калькулятор расчета объема теплоизоляции трубопроводов

Как определить толщину изоляции трубы

Калькулятор расчета изоляции отводов круглого сечения

Как определить толщину изоляции трубы

Как определить толщину изоляции трубы

Калькулятор расчета объема изоляции гнутых отводов

Данный калькулятор подойдет для расчета объема теплоизоляции гнутых отводов из углеродистой стали. Размеры  гнутых отводов вычислены в соответствии с ОСТ 36-42-81 «Детали трубопроводов из углеродистой стали сварные и гнутые Ду до 500мм на Ру до 10 МПа (100 кгс/см2). Отводы гнутые. Конструкция и размеры»

калькулятор Калькуляторы теплоизоляции

Вам также может понравиться

Расчет толщины тепловой изоляции трубопроводов

Технологические трубопроводы предприятий и систем жизнеобеспечения населенных пунктов транспортируют различные среды с разными параметрами.

Эти параметры, в частности, температура, должны сохраняться независимо от воздействия условий окружающей среды, а для этого необходима теплоизоляция.

Ее толщину определяет расчет, который базируется на требованиях нормативных документов.

Как определить толщину изоляции трубы

Теплоизоляция трубопровода должна сохранять температуру в трубе независимо от воздействия на нее условий окружающей среды.

Характеристики прокладки сетей и нормативной методики вычислений

Выполнение вычислений по определению толщины теплоизоляционного слоя цилиндрических поверхностей — процесс достаточно трудоемкий и сложный.

Если вы не готовы доверить его специалистам, следует запастись вниманием и терпением для получения верного результата. Самый распространенный способ расчета теплоизоляции труб — это вычисление по нормируемым показателям тепловых потерь.

Дело в том, что СНиПом установлены величины потерь тепла трубопроводами разных диаметров и при различных способах их прокладки:

Как определить толщину изоляции трубы

Схема утепления трубы.

  • открытым способом на улице;
  • открыто в помещении или тоннеле;
  • бесканальным способом;
  • в непроходных каналах.

Суть расчета заключается в подборе теплоизоляционного материала и его толщины таким образом, чтобы величина тепловых потерь не превышала значений, прописанных в СНиПе.

Методика вычислений также регламентируется нормативными документами, а именно — соответствующим Сводом Правил.

Последний предлагает несколько более упрощенную методику, нежели большинство существующих технических справочников. Упрощения заключены в таких моментах:

  1. Потери теплоты при нагреве стенок трубы транспортируемой в ней средой ничтожно малы по сравнению с потерями, которые теряются в слое наружного утеплителя. По этой причине их допускается не учитывать.
  2. Подавляющее большинство всех технологических и сетевых трубопроводов изготовлено из стали, ее сопротивление теплопередаче чрезвычайно низкое. В особенности если сравнивать с тем же показателем утеплителя. Поэтому сопротивление теплопередаче металлической стенки трубы рекомендуется во внимание не принимать.

Расчет толщины тепловой изоляции трубопроводов

Ниже представлена краткая методика инженерного расчета тепловой изоляции трубопровода (трубы). Оптимальную толщину теплоизоляционного слоя находят путём технико-экономического расчета. Практически толщину слоя изоляции определяют исходя из его термического спротивления (не менее 0,86 [ o С • м 2 /Вт] для труб с Dу o С м 2 /Вт] для труб с Dу > 25 мм).

Качество тепловой изоляции трубопровода оценивается её КПД. В современных конструкциях тепловой изоляции при использовании материалов с теплопроводностью до 0,1 [Вт/м • K] оптимальная толщина слоя изоляции обеспечивает тепловую эффективность этой изоляции, близкой к 0,8 (т.е. эффективность 80%).

Приведенная на этой страничке информация может быть полезна для проведения инженерных расчетов при проектировании, например, тепловой изоляции различных трубопроводов. В качестве примера ниже приведен расчет тепловой изоляции для выпускного коллектора высокофорсированного дизеля.

Полное термическое сопротивление изоляционной конструкции для цилиндрической стенки трубопровода (трубы) определяется по формуле:

dиз – искомый наружный диаметр стенки изоляции трубопровода.

  Теплый пол Grandeks (греющая пленка)

  • dн – наружный диаметр трубопровода.
  • λиз – коэффициент теплопроводности изоляционного материала.
  • αв – коэффициент теплоотдачи от изоляции к воздуху.

Линейная плотность теплового потока

tн – температура наружной стенки трубопровода.

tиз – температура поверхности изоляции.

Расчет тепловой изоляции трубопроводов и оборудования выполняется по определенным формулам и должен соответствовать СНиП.

  1. Схема тепловой изоляции трубопроводов.
  2. Расчет тепловой изоляции для плоских поверхностей осуществляется по следующим формулам (Рис.1)
  3. Расчет для криволинейных поверхностей может осуществляться по следующим формулам (рис.2), где
  • tв — это температура среды внутри изолируемого оборудования, °С;
  • Rиз — термическое сопротивление кондуктивному переносу теплоты плоского слоя изоляции, м²×°С/Вт;
  • tн — это температура окружающей среды, °С;
  • qF — является поверхностной плотностью теплового потока через плоскую теплоизоляционную конструкцию, Вт/м²;
  • Rвн — является термическим сопротивлением теплоотдаче на внутренней поверхности стенки изолируемого объекта, м²×°С/Вт;
  • Rст — является термическим сопротивлением кондуктивному переносу теплоты стенки изолируемого объекта, м²×°С/Вт;
  • Rн — является термическим сопротивлением теплоотдаче на наружной поверхности защитного слоя, м²×°С/Вт.
  • Расчет тепловой изоляции для плоских поверхностей.
  • По формуле 1 осуществляется расчет теплоизоляции для плоской поверхности из n-слоев (в большинстве случаев защитная поверхность состоит не из одного, а из нескольких слоев).
  • По формуле 2 осуществляется расчет однослойной теплоизоляции для плоской поверхности.
  • По формуле 3 осуществляется расчет для криволинейной поверхности из n-слоев.

  СТЫКОВЫЕ СВАРОЧНЫЕ АППАРАТЫ ДЛЯ ПОЛИЭТИЛЕНОВЫХ ТРУБ

По формуле 4 осуществляется расчет однослойной теплоизоляции для криволинейной поверхности.

Самостоятельно провести расчет толщины теплоизоляции оборудования довольно трудно. Если у вас нет времени и специальных знаний, вы можете обратиться в компанию, которая проведет расчет за вас.

Читайте также:  Держатели выхлопной трубы калина

На сегодняшний день на рынке немало предложений от фирм, которые занимаются подобными вычислениями и составлением всей сопутствующей документации на профессиональном уровне.

Это более затратный способ, нежели самостоятельный расчет, но он поможет избежать ошибок и сэкономит ваше время.

Если же вы все же решили работать самостоятельно, т.е. без привлечения профессионалов, то для вас существует множество компьютерных программ, которые помогут автоматизировать процесс самостоятельного расчета толщины теплоизоляционного слоя и других параметров изоляции.

Функциональность большинства таких программ поможет вам в автоматическом режиме просчитать нужные параметры, достаточно просто ввести характеристики вашей конструкции и выбранного теплоизоляционного материала.

вы сможете провести расчет следующих показателей для трубопроводов:

Тепловая изоляция труб для последующего обеспечения заданной плотности теплового потока

Таблица тепловой изоляции труб для последующего обеспечения заданной плотности теплового потока.

В случае, когда рассчитывается теплоизоляция для трубопроводов надземной прокладки, расчет ведется по заданной плотности теплового потока.

Вычисления толщины во многом зависят от температуры теплоносителя, температуры воздуха, расположения изолируемого трубопровода (помещение или открытый воздух), величины заданного или нормального теплового потока, а также наружного диаметра трубы.

Следует помнить, что значение плотности теплового потока с поверхности труб будет определяться общим тепловым балансом предприятия, требованиями технологического процесса или нормативными значениями четвертого приложения СНиП 2.04.14-88 «Тепловая изоляция оборудования и трубопроводов».

Методика инженерного расчёта тепловой изоляции трубопровода

Ниже представлена краткая методика инженерного расчёта тепловой изоляции трубопровода (трубы). Оптимальную толщину теплоизоляционного слоя находят путём технико-экономического расчёта. Практически толщину слоя изоляции определяют исходя из его термического спротивления (не менее 0,86 [oС • м2/Вт] для труб с Dу 25 мм).

Калькулятор онлайн

Качество тепловой изоляции трубопровода оценивается её КПД. В современных конструкциях тепловой изоляции при использовании материалов с теплопроводностью до 0,1 [Вт/м • K] оптимальная толщина слоя изоляции обеспечивает тепловую эффективность этой изоляции, близкой к 0,8 (т.е. эффективность 80%).

Приведенная информация может быть полезна для проведения инженерных расчётов при проектировании различных машин и узлов, содержащих трубопроводы с тепловой изоляцией. В качестве примера ниже приведены результаты расчёта тепловой изоляции для выпускного коллектора [трубопровода] высокофорсированного дизеля.

  1. Полное термическое сопротивление изоляционной конструкции для цилиндрической стенки трубопровода (трубы) определяется по формуле:
  2. где
  3. dиз — искомый наружный диаметр стенки изоляции трубопровода.
  4. dн — наружный диаметр трубопровода.
  5. λиз — коэффициент теплопроводности изоляционного материала.
  6. αв — коэффициент теплоотдачи от изоляции к воздуху.

Линейная плотность теплового потока

  • где
  • tн — температура наружной стенки трубопровода.
  • tиз — температура поверхности изоляции.

Температура внутренней стенки изоляции трубопровода

  1. где
  2. dв — внутренний диаметр трубопровода.
  3. αг — коэффициент теплоотдачи от газа к стенке.
  4. λт — коэффициент теплопроводности материала трубопровода.

Уравнение теплового баланса

из которого определяется искомый наружный диаметр изоляции трубопровода dиз, и далее толщина изоляции этого трубопровода (трубы) вычисляется по формуле:

Пример: Необходимо рассчитать тепловую изоляцию трубопровода высокофорсированного дизеля, наружный диаметр выпускного трубопровода составляет 0,6 м, внутренний диаметр этого трубопровода составляет 0,594 м, температура наружной стенки трубопровода принимается равной 725 К, температура наружной поверхности изоляции принимается равной 333 К, теплопроводность изоляционного материала принимается равной 0,11 Вт/(м К), тогда проведенный расчет изоляции трубопровода по методике, описанной выше, покажет, что толщина необходимой изоляции трубопровода должна составлять не менее 0,1 м.

Тепловая изоляция трубопроводов для обеспечения нужной температуры на поверхности

Преследование таких целей обычно связано с тем, что требования техники безопасности предписывают необходимость снизить тепловыделение в помещении для защиты обслуживающего персонал от ожогов, а тепловые потери на предприятии не регламентированы.

По закону, в соответствии с нормами и требованиями СНиП, при температуре теплоносителя ниже 100°С, находящегося в помещении, температура на поверхности изоляции труб не должна превышать 35°. При температуре теплоносителя свыше 100 °С, температура поверхности не должна превышать 45°.

На открытом воздухе планка температур повышается, но все равно ограничена 55°С при использовании металлического защитного покрытия и 60° при использовании других видов покрытий теплоизоляции труб.

Схема тепловой изоляции трубопроводов для обеспечения нужной температуры на поверхности.

При выборе защитного покрытия теплоизоляции труб, находящихся в помещении, необходимо учитывать радиационные свойства его поверхности.

Так, для снижения толщины слоя тепловой изоляции трубопроводов следует применять неметаллическое защитное покрытие с высоким коэффициентом излучения, так как при одних и тех же условиях расчета толщина неметаллического покрытия теплоизоляции труб окажется существенно ниже, чем при металлическом покрытии. Размеры изоляционного слоя, определяемого расчетом по заданной температуре на его поверхности, будут зависеть от таких факторов как:

  • температура окружающего воздуха;
  • расположение конструкции (может находиться в помещении или на открытом воздухе);
  • наружный диаметр трубы;
  • температура самого теплоносителя;
  • коэффициент теплоотдачи от поверхности теплоизоляции трубопровода к окружающему воздуху.
  • В конструкциях теплоизоляции оборудования и трубопроводов с температурой содержащихся в них веществ в диапазоне от 20 до 300 °С
  • для всех способов прокладки, кроме бесканальной, следует применять
  • теплоизоляционные материалы и изделия с плотностью не более 200 кг/м3
  • и коэффициентом теплопроводности в сухом состоянии не более 0,06
  • Для теплоизоляционного слоя трубопроводов при бесканальной
  • прокладке следует применять материалы с плотностью не более 400 кг/м3 и коэффициентом теплопроводности не более 0,07 Вт/(м · К).
  • Расчет толщины тепловой изоляции трубопроводов δk
  • , м по нормированной плотности теплового потока выполняют по формуле:
  • где – наружный диаметр трубопровода, м;
  1. отношение наружного диаметра изоляционного слоя к диаметру трубопровода .
  2. Величину определяют по формуле:
  3. основание натурального логарифма;
  4. теплопроводность теплоизоляционного слоя Вт/(м·oС) определяемый по приложению 14.

  Какой щебень нужен для колодца?

  • R
  • к — термическое сопротивление слоя изоляции, м·°С/Вт, величину которого определяют при подземной канальной прокладке трубопровода по формуле:
  • где суммарное термическое сопротивление слоя изоляции и других дополнительных термических сопротивлений на пути теплового
  • потока,м·°С/Вт определяемое по формуле:
  • где средняя за период эксплуатации температура теплоносителя, оС. В соответствии с [6] её следует принимать при различных температурных режимах по таблице 6:
  • Таблица 6 – Температура теплоносителя при различных режимах
Температурные режимы водяных тепловых сетей, oC 95-70 150-70 180-70
Трубопровод Расчетная температура теплоносителя, oC
Подающий
Обратный
  1. среднегодовая температура грунта, для различных городов указана в [ 9, c 360 ]
  2. нормированная линейная плотность теплового потока, Вт/м (принимается по приложению15);
  3. коэффициент, принимаемый по приложению 16;
  4. коэффициент взаимного влияния температурных полей соседних трубопроводов;
  5. термическое сопротивление поверхности теплоизоляционного слоя, м·oС /Вт, определяемое по формуле:
  6. где коэффициент теплоотдачи с поверхности тепловой изоляции в
  7. окружающий воздух, Вт/(м. · °С) который, согласно [6], принимается при прокладке в каналах , Вт/(м · °С);
  8. d
  9. – наружный диаметр трубопровода, м;
  10. термическое сопротивление внутренней поверхности канала, м·oС/Вт, определяемое по формуле:
  11. где коэффициент теплоотдачи от воздуха к внутренней поверхности канала, αe = 8 Вт/(м. · °С);
  12. внутренний эквивалентный диаметр канала, м, определяемый
  13. по формуле:
  14. периметр сторон по внутренним размерам канала, м; (размеры каналов приведены в приложении 17)
  15. внутреннее сечение канала, м2;
  16. термическое сопротивление стенки канала, м·oС/Вт определяемое по формуле:
  17. где теплопроводность стенки канала, для железобетона
  18. наружный эквивалентный диаметр канала, определяемый по наружным размерам канала, м;
  19. термическое сопротивление грунта, м·oС/Вт определяемое по формуле:
  20. где коэффициент теплопроводности грунта, зависящий от его
  21. структуры и влажности. При отсутствии данных значение можно принимать для влажных грунтов 2,0–2,5 Вт/(м · °С), для сухих грунтов 1,0–1,5 Вт/(м · °С);
  22. глубина заложения оси теплопровода от поверхности земли, м.
Читайте также:  Давление испытаний пластиковых трубопроводов

Расчетную толщину теплоизоляционного слоя в конструкциях тепловой изоляции на основе волокнистых материалов и изделий (матов, плит, холстов) следует округлять до значений, кратных 10 мм.

В конструкциях на основе минераловатных полуцилиндров, жестких ячеистых материалов, материалов из вспененного синтетического каучука, пенополиэтилена и пенопластов следует принимать ближайшую к расчетной толщину изделий по нормативным документам на соответствующие материалы.

Если расчетная толщина теплоизоляционного слоя не совпадает с номенклатурной толщиной выбранного материала, следует принимать по

действующей номенклатуре ближайшую более высокую толщину

теплоизоляционного материала. Допускается принимать ближайшую более низкую толщину теплоизоляционного слоя в случаях расчета по температуре на поверхности изоляции и нормам плотности теплового потока, если разница между расчетной и номенклатурной толщиной не превышает 3 мм.

ПРИМЕР 8.

Определить толщину тепловой изоляции по нормируемой плотности теплового потока для двухтрубной тепловой сети с dн = 325 мм, проложенной в канале типа КЛ 120×60. Глубина заложения канала hк=0,8 м,

Среднегодовая температура грунта на глубине заложения оси трубопроводов tгр= 5,5 oC, теплопроводность грунта λгр=2,0 Вт/(м·oC), тепловая изоляция – маты теплоизоляционные из минеральной ваты на синтетическом связующем. Температурный режим тепловой сети 150-70oC.

  • Решение:
  • 1. По формуле (51) определим внутренний и наружный эквивалентный диаметр канала по внутренним и наружным размерам его поперечного сечения:
  • 2. Определим по формуле (50) термическое сопротивление внутренней поверхности канала
  • 3. По формуле (52) рассчитаем термическое сопротивление стенки канала:
  • 4. По формуле (49) определим термическое сопротивление грунта:
  • 5. Приняв температуру поверхности теплоизоляции , (приложение) определим средние температуры теплоизоляционных слоев подающего и обратного трубопроводов:
  • 6. Используя приложение, определим также коэффициенты теплопроводности тепловой изоляции (матов теплоизоляционных из минеральной ваты на синтетическом связующем):
  • 7. По формуле (49) определим термическое сопротивление поверхности теплоизоляционного слоя
  • 8. По формуле (48) определим суммарные термические сопротивления для подающего и обратного трубопроводов:
  • 9. Определим коэффициенты взаимного влияния температурных полей подающего и обратного трубопроводов:
  • 10. Определим требуемые термические сопротивления слоёв для подающего и обратного трубопроводов по формуле (47):
  • x
  • x = 1,192
  • x
  • x = 1,368
  • 11. Величину B для подающего и обратного трубопроводов определим по формуле (46):
  • 12. Определим толщину тепловой изоляции для подающего и обратного трубопроводов по формуле (45):

13. Принимаем толщину основного слоя изоляции для подающего и обратного трубопроводов одинаковой и равной 100 мм.

Литература

Основная

1. Хрусталев, Б.М. Теплоснабжение и вентиляция: учеб.пособие/ Б.М. Хрусталев, Ю.Я. Кувшинов, В.М. Копко. – М.: Ассоциация строительных вузов, 2008. – 784 с.

Дополнительная

2. СНиП 2.04.01-85*. Внутренний водопровод и канализация зданий.

3. СП 41-101-95. Проектирование тепловых пунктов.

Калькулятор расчета изоляции (утепления) труб отопления при наружной прокладке – с пояснениями

Автоматизированный расчет объема изоляции круглых поверхностей, таких как трубы, воздуховоды и трубопроводы, по наружному диаметру.Калькулятор рассчитывает объем изоляции в метрах кубических, а также площадь изоляции в метрах квадратных.Согласно технической части сборника ФЕР26:2. Правила исчисления объемов работ2.

1 Объем изоляции «в деле» (Ои) м3, приходящийся на 1 м длины трубопроводов или оборудования цилиндрической формы, исчисляется по формуле:Ои = 3,14 × (Д + Т) × Т, гдеТ- толщина изоляционного слоя, м;Д- наружный диаметр трубопровода или оборудования, м.2.2.

Длина изолируемых трубопроводов, а также оборудования цилиндрического и прямоугольного сечений и т. п.

определяется по осевой линии для каждого сечения, причем арматура и фланцы, фитинги и т. д. из длины не исключаются.2.3.

Периметр многоугольного и подобного сечения определяется как среднеарифметическая величина периметров внутренней и наружной поверхности изоляции.2.4.

Объем изоляции отдельных мест у контрольно-измерительных приборов и арматуры, а также возле всякого рода люков, штуцеров, отверстий на оборудовании учтен расценками, при этом длина изолируемых трубопроводов измеряется без вычета указанных мест.

Для получения результата введите в поля формы значения.

Понравился калькулятор? Поделись с друзьями

  Металлическая оцинкованная труба: процесс изготовления и

Найдите угол ABC равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и * Трапеция Математика / Русский язык 9 класс.

Расчет объема изоляции, площади антикоррозийного покрытия и укрывного материала

Расчет объема изоляции, площади укрывного материала и антикоррозийного покрытияприходится часто производить при составлении смет и закрытии выполненных объемов. Мы все привыкли пользоваться справочниками или калькулятором для вычисления фактических объемов, но если это можно автоматизировать, то давайте использовать эту возможность.

Для расчета объема изоляции и площади покрывного материала выберите тип изолируемой поверхности и введите значения в соответствующие поля.

Расчет объема изоляции, площади антикоррозийного покрытия и укрывного материала

Расчет объема изоляции, площади укрывного материала и антикоррозийного покрытияприходится часто производить при составлении смет и закрытии выполненных объемов. Мы все привыкли пользоваться справочниками или калькулятором для вычисления фактических объемов, но если это можно автоматизировать, то давайте использовать эту возможность.

Для расчета объема изоляции и площади покрывного материала выберите тип изолируемой поверхности и введите значения в соответствующие поля.

Расчет объема изоляции трубопроводов и укладка материала

    Виды изоляционных материалов Укладка изоляции Расчет изоляционных материалов трубопроводов Устранение дефектов изоляции

Изоляция трубопроводов необходима для того, чтобы значительно снизить теплопотери.

Предварительно нужен расчет объема изоляции трубопроводов. Это позволит не только оптимизировать затраты, но и обеспечить грамотное выполнение работ, поддержание труб в надлежащем состоянии. Правильно выбранный материал позволяет предотвратить коррозию, улучшить теплоизоляцию.

Схема изоляции труб.

Сегодня для защиты трасс можно применять разные типы покрытий. Но необходимо учитывать, как именно и где будут проходить коммуникации.

Для водопроводных труб можно использовать сразу два типа защиты – внутреннюю обмазочную и внешнюю. Для отопительных трасс рекомендуется применять минеральную вату или стекловату, а для промышленных приобретать ППУ. Расчеты выполняются разными методами, все зависит от выбранного типа покрытия.

Виды изоляционных материалов

Для выполнения изоляции трубопроводов используются различные материалы. Они отличаются по типу нанесения, толщине слоя и по своим характеристикам.

К выбору следует относиться внимательно. Битумные покрытия еще не так давно считались самыми востребованными. В некоторых случаях трубу может дополнительно защищать стеклохолст.

Битумные материалы используются для теплоизоляции подземных линий. Они препятствуют возникновению коррозии. Рабочие условия следующие: при обычной наружной прокладке -40/+65°C, для подземного глубинного использования -5/+30°C.

Таблица изоляции медных и стальных труб.

В целях экономии можно применять полимерно-битумные композиции. Монтаж быстрый, качество изоляции трубопровода получается высоким. ППУ – надежный и прочный материал, который может быть использован во время бесканальной или канальной прокладки коммуникаций, для надземного трубопровода.

Получается прокладка «труба в трубе». Процесс работ простой, с ним справится даже новичок. Пенополиуретан в жидком виде наносится на поверхность, после чего он застывает, образуя прочную и крепкую скорлупу.

Антикоррозионная, полиэтиленовая изоляция – это многослойное покрытие, которое наносится только в промышленных условиях.

Такие трубы применяются для транспортировки нефтепродуктов, газовых смесей. Стекловата сегодня применяется тоже часто. Это простой и надежный материал, который наносится просто.

Расчет площади проводится без особых трудностей, но необходимо учесть толщину слоя. Минеральная вата тоже отлично подходит для теплотрасс. Материал может использоваться для утепления труб с разным диаметром.

Общие сведения

Что учитывают во время проведения расчета:

1.какую температуру имеют утепляемые трубы.

2.диапазон перепада температуры на улице.

Читайте также:  Балеринка по дереву, кафелю, металлу

3.уровень механического воздействия, к примеру, вибрации, линейное расширение.

4.максимально допустимые нагрузки на трубопровод.

5.нагрузки, которые испытывает трубопровод от грунта либо транспорта, проходящего сверху.

6.показатель теплопроводности утепляющего материала.

7.устойчивость теплоизоляции к разного рода деформации.

Справка! Согласно СНиП 41 – 03 – 2003 все теплоизоляционные материалы имеют различные характеристики, которые подходят для утепления разного вида трубопроводов, способные выдержать разные условия эксплуатации. Трубопроводы, имеющие температуру меньше двенадцати градусов, должны иметь пароизоляционный слой.

Укладка изоляции

Расчет изоляции зависит от того, какая укладка применяется. Она может быть наружной либо внутренней.

Наружная изоляция рекомендована для защиты систем отопления. Она наносится по внешнему диаметру, обеспечивает защиту от потерь тепла, появления следов коррозии. Для определения объемов материала достаточно вычислить поверхностную площадь трубы.

Теплоизоляция сохраняет температуру в трубопроводе независимо от воздействия на нее условий окружающей среды.

Внутренняя укладка используется для водопровода.

Она отлично защищает от химической коррозии, предотвращает потери тепла трассами с горячей водой. Обычно это обмазочный материал в виде лаков, специальных цементно-песчаных растворов. Выбор материала может осуществляться и в зависимости от того, какая прокладка будет применяться.

Канальная прокладка востребована чаще всего. Для этого предварительно устраиваются специальные каналы, в них и помещаются трассы. Реже используется бесканальный способ укладки, так как для проведения работ необходимо специальное оборудование и опыт.Метод применяется в том случае, когда выполнять работы по устройству траншей нет возможности.

Вывод

Вот мы и обговорили все самые важные моменты касательно утепления трубопроводов. Вне зависимости от того, какой материал и способ вы выберете для этой цели – перед тем как приступать к монтажу теплоизоляции, желательно рассчитать количество необходимого утеплителя и его стоимость.

Так в дальнейшем вы сэкономите силы и финансовые затраты. Удачи всем строителям своего теплого настоящего и будущего! В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Расчет изоляционных материалов трубопроводов

Расчеты изоляции для трубопроводов провести несложно, для удобства рекомендуется пользоваться специальными калькуляторами.

Есть ряд действий, которые позволяют предварительно определить объемы материалов. Перед тем как начинать расчеты, следует сразу определиться, какой именно тип утеплителя будет использован. Изоляторы отличаются не только внешне, но и условиям укладки, свойствами.

Для изоляции трубопроводов могут применяться окрасочные вещества.

Качество материалов высокое, слой получается тонким, но прочным, полностью выполняющим все функции. Расчет делается таким образом:

Используется формула вычисления площади цилиндра S=2πr(h+r), где r – радиус основания трубы, h – параметр длины трубы, π – константа, приближенное значение для данного случая используется 3,14. Полученное значение и есть площадь окраски. Далее следует согласно инструкции производителя определить расход материала.

Схема расчета теплоизоляции для трубы.

При использовании обычных изоляционных материалов расчеты проводятся намного проще. Необходимо определить объем для внутренней части трубы и внешней. Для этого применяется формула V=πr2h, где:

    V – объем трубопровода; r – значение радиуса (внешнего или внутреннего); h – длина трубы; π равно 3,14.

Отдельно вычисляется значение внутреннего и внешнего радиуса, полученная разница и будет равна объему всего материала изоляции трубопровода. Обертывание – это вариант внешней изоляции. В данном случае расчет выполняется аналогично по первой указанной формуле, но требуется учитывать толщину материала, так как она оказывает влияние на количество.

Работа с онлайн калькулятором

Для расчета толщины теплоизоляции трубопроводов в поля калькулятора вводятся следующие исходные данные:

  • Наружный диаметр трубопровода (в мм).
  • Материал утеплителя. Обычно поле имеет вид выпадающего списка, где можно выбрать подходящий вариант. Некоторые калькуляторы более специфичны, и рассчитаны только на один теплоизолятор (например, минераловатный цилиндр).
  • Средняя температура теплоносителя. Показатель может включать два числа (показания в прямом/обратном трубопроводе), например, 65/50, 90/50, 110/50.
  • Температура изолируемой поверхности (в °C).

Утепление подземных коммуникаций Источник znatoktepla.ru

  • Вид защитного покрытия, металлическое или неметаллическое.
  • Время до замерзания воды при остановке системы: 0,5 ч, 0,75 ч, 1 ч, 1,25 ч.

Для вычисления объема теплоизоляции трубопроводов в калькулятор вводятся дополнительные параметры:

  • Толщина изоляции (в мм).
  • Длина трубопровода (в м).
  • Материал, из которого изготовлена труба (пластик или металл).
  • Удельный вес (плотность) утеплителя, его коэффициент теплопроводности (иногда достаточно выбрать название из списка).

Некоторые калькуляторы изоляции позволяют рассчитать объем теплоизоляции для отводов круглого сечения. В этом случае необходимо указать радиус изгиба (кривизны осевой линии) и количество отводов.

В итоге вы получите толщину или объем теплоизолятора, подходящие для ваших условий. Для любых параметров не рекомендуется приобретать теплоизоляцию большей толщины, «с запасом». Принципиального улучшения такая модификация не принесет, а вот удорожание материала, по сравнению с ничтожной оптимизацией, будет существенным.

Утепление трубопровода на улице Источник pinimg.com

Устранение дефектов изоляции

Со временем для изоляции трубопровода потребуется ремонт.

Конечно, правильная эксплуатация позволяет продлить сроки службы не только труб, но и отделки. Периодически требуется проводить осмотр, после чего выполнять частичный ремонт, чтобы не доводить до капитального, т. е.

замены самого слоя изоляции или в худшем случае труб. Как избежать ремонтов? Необходима установка специальных датчиков, контролирующих состояние системы.

Сам ремонт может заключаться в выполнении таких действий:

Регулярно следует проводить осмотр состояния поверхности изоляции. Если есть повреждения, то надо залатать дефектный участок, осмотреть поверхность трубы.

Дальнейший ремонт зависит от того, в каком состоянии находятся трубы. Обычно требуется просто счистить следы коррозии, но в более сложных случаях нужна замена отдельных участков. Затем наносится новый слой изоляции трубопровода.

При ремонте покрытия следует выбирать тот же материал, который и был ранее. Если он по каким-либо условиям не удовлетворяет требованиям, то заменять следует всю изоляцию, чтобы не происходило теплопотерь, не возникло участков, подверженных коррозии.

Для теплоизоляции труб и их защиты от коррозии можно применять разные материалы. Перед тем как приобретать их, следует правильно выбрать покрытие.

  • Антон Михайлович Дергачев
  • Никаких проблем. Берем перф и перфорируем)
  • Интересная инфа, не знал что надо армировать пено-, газоблок

Добавлю в закладки. Как раз планирую ставить каркасник.

В последнее время все чаще задумываюсь о постройке дома, нахожу много подобных полезных статей. Однозначно буду делать пароизоляцию, тем более, что ва.

Спасибо. Очень подробно и понятно, а в моем случае и актуально.

Предлагаем Вам калькулятор для автоматизированного расчета объема изоляции для магистралей различного назначения – канализации, воздуховодов, отопления или газовых трубопроводов. Рекомендуем предварительно ознакомиться с инструкцией.

В условиях нашей страны с ее огромными просторами трубопроводный транспорт является самым эффективным средством транспортировки жидких продуктов. Размеры труб при этом достигают трехметрового диаметра, что позволяет транспортировать по ним большие объемы продуктов. Естественно, что такие магистрали нуждаются в определенной защите от разных факторов:

    коррозии всех видов;промерзания;физического воздействии природных явлений;от несанкционированного вмешательства посторонних лиц.

Все магистрали, включая газопроводы и нефтепроводы, не говоря уже о водных системах, подлежат изолированию работы в температурном интервале -45 + 60 градусов.

Массовое применение такой технологической операции требует тщательного расчета потребности в материалах покрытия поверхности труб, чтобы расходы на нее были оптимальными, подсчет изоляции трубопроводов с использованием различных калькуляторов является необходимостью.

Смета мдс 2021

Программа для составления смет на строительство и проверки сметной документации

ГОСУДАРСТВЕННЫЕ СМЕТНЫЕ НОРМАТИВЫ

ГОСУДАРСТВЕННЫЕ ЭЛЕМЕНТНЫЕ СМЕТНЫЕ НОРМЫ НА СТРОИТЕЛЬНЫЕ И СПЕЦИАЛЬНЫЕ СТРОИТЕЛЬНЫЕ РАБОТЫ ГЭСН-2001

Ссылка на основную публикацию
Adblock
detector