Поперечное усилие в трубе

При монтаже бытовых трубопроводов расчет не выполняют, так как для этих целей применяют стандартные трубы, прочности которых вполне достаточно, чтобы выдержать давление воды, газа и пр. А вот строить промышленные магистрали без определенного расчета в большинстве случаев опасно, так как это может привести к быстрому выходу из строя системы и другим неприятным последствиям.

В данной статье мы рассмотрим основы того, как выполняется расчет прочности трубы, а также некоторых других параметров, которые необходимо знать, прежде чем построить конструкцию.

Поперечное усилие в трубе

Промышленный трубопровод

Расчет прочности

Надо сказать, что расчет прочности трубы нужен не только для того, чтобы магистраль была надежной. Это также позволит избежать перерасхода средств, ведь излишняя прочность приведет к удорожанию строительства. Поэтому проектирование является не менее важным этапом строительства трубопровода, чем его монтаж.

Итак, данный расчет подразумевает определение нескольких основных параметров:

  • Внутренний диаметр трубы в зависимости от скорости потока транспортируемой жидкости;
  • Внутренний диаметр в зависимости от гидравлического сопротивления;
  • Толщина стенок.

Каждый параметр определяется по определенным формулам, с которыми мы ознакомимся ниже.

Поперечное усилие в трубе

Внутренний диаметр трубы

Расчет внутреннего диаметра

Определить оптимальный внутренний диаметр трубы при заданной скорости протекания жидкости в трубопроводе и ее расходе можно своими руками по формуле – D=4Q3600vπy м, где:

  • Q – расход жидкости, измеряется в мг/ч.
  • v – скорость протекания жидкости в трубопроводе, измеряется в м/сек.
  • y – удельный вес жидкости при заданных параметрах, измеряется в кг/м3. Данное значение принимается по справочникам.

Скорость движения разных жидкостей и газов определенны расчетами, а также подтверждены практическими опытами. Поэтому, при расчетах можно воспользоваться следующими данными:

Для воды и всевозможных маловязких жидкостей (таких как ацетон, спирт, слабые растворы щелочей и кислот, бензин и пр.) 15 – 30 м/сек
Для газов высокого давления и перегретого пара 30-60 м/сек
Для насыщенного пара и сжатого воздуха 20 – 40 м/сек

Из приведенной выше формулы следует, что диаметр сечения трубопровода зависит от скорости протекания жидкости. Чем она выше, тем проходное сечение должно быть меньше, соответственно, ниже будут и затраты на строительство конструкции.

Поперечное усилие в трубе

Промышленный паропровод

Гидравлическое сопротивление

При движении жидкости или газа по трубопроводу обязательно возникает сопротивление в результате трения транспортируемого продукта о стенки трубы и всевозможные преграды в системе. Это сопротивление называют гидравлическим. Чем выше скорость протекания жидкости и ее плотность, тем больше гидравлическое сопротивление.

Диаметр трубопровода можно определить по заданной потере напора.

Инструкция по выполнению данного расчета выглядит следующим образом – D=ξL∆p∙y∙v2g кгс/см2, где:

  • ∆p = P1-Р2 — заданная либо допускаемая потеря давления между начальной и конечной точкой трубопровода, измеряется в кгс/см2.
  • L — длина магистрали.
  • ξ — коэффициент гидравлического сопротивления, может составлять 0,02—0,04.
  • g — ускорение силы тяжести, которое равняется 9,81м/сек.

Конечно, данный расчет позволяет определить потерю давления в прямой трубе. Что касается определения этого показателя арматуры и фасонных частей, то его находят по потере давления на прямом участке трубы соответствующего диаметра и с эквивалентной длиной.

Эквивалентной длиной называют прямой участок трубы, гидравлическое сопротивление которого равняется сопротивлению фасонной части при равных прочих условиях.

Поперечное усилие в трубе

На фото – сварной отвод Ду=150

К примеру, сопротивление секционного сварного отвода Ду=150 будет равняться сопротивлению в прямой трубе длиной 29 м. Сопротивление проходного вентиля Ду=150 равняется сопротивлению в трубе длиной 50 м.

Поперечное усилие в трубе

Основные параметры трубы

Толщина стенки

Основным параметром трубы, который влияет на прочность, является толщина стенки.

Этот показатель зависит от нескольких факторов:

На большинство трубопроводов воздействует лишь внутреннее давление. Внешнему же давлению подвержены вакуумные трубопроводы, а также системы с рубашками, предназначенные для обогрева паром легко застывающих или кристаллизирующихся продуктов.

Толщину стенок стальных труб, на которые воздействует внутреннее избыточное давление, определяют расчетом на прочность и добавкой толщины, которая отводится на износ от коррозии.

Для этого используется следующая формула – S= Sp-C,

  • Sp — расчетная толщина, измеряемая в мм.
  • С — прибавка на коррозию. Как правило она составляет 2-5 мм (для среднеагрессивных сред).

Расчетную толщину стенки можно получить по следующей формуле – Sp=pDн230σдопφ+P мм, где:

  • p —избыточное внутреннее давление в трубе, кгс/см2.
  • Dн— наружный диаметр трубопровода.
  • σдоп — допустимое напряжение на разрыв, сгс/мм2. Данный показатель можно определить по справочникам, в зависимости от температуры транспортируемой жидкости и марки стали.
  • φ — коэффициент прочности сварного шва. Если труба бесшовная, то коэффициент φ=1. Для сварных труб этот показатель может составлять 0,6—0,8, в зависимости от типа сварного шва и вида сварки.

Поперечное усилие в трубе

Ремонт трубопровода

Обратите внимание!
При монтаже трубопровода, а также в случае его ремонта, нельзя устанавливать отдельные случайные детали, выполненные из непроверенного или неизвестного материала, так как это может привести к аварии в системе.

Надо сказать, что при расчете трубопроводов уделяют внимание не только толщине труб, но и самому материалу. К примеру, если температура, при которой будет эксплуатироваться система, составляет менее 450 градусов по Цельсию, то используют трубы, выполненные из стали марки 20.

Поперечное усилие в трубе

Трубы из стали 12Х1МФ

Если температура транспортируемого продукта в системе будет высокой, то выбирают сталь 12Х1МФ. Это позволяет использовать трубопровод с более тонкими стенками. Соответственно, от толщины стенок во многом зависит и цена конструкции.

Устойчивость трубопровода

При расчете магистралей помимо прочности трубопровода важным параметром является его устойчивость в продольном направлении.

Данный расчет выполняют из условия – S≤mNкр, где

  • S – продольное эквивалентное осевое усилие в сечении системы.
  • m – коэффициент условий работы системы. Данное значение находится в справочной литературе.
  • Nкр – критическое продольное усилие, при котором трубопровод теряет продольную устойчивость. Данное значение необходимо определять согласно существующим правилам строительной механики, с учетом изначального искривления системы, наличия балласта, который закрепляет трубопровод, и характеристик грунта. На обводненных участках необходимо также учитывать гидростатическое воздействие воды.

Поперечное усилие в трубе

Изгиб магистрали

Обратите внимание!
Продольную устойчивость необходимо проверять для криволинейных участков в плоскости изгиба магистрали.

На прямолинейных участках продольную устойчивость подземных участков нужно проверять в вертикальной плоскости, радиус начальной кривизны при этом принимается равным 5000 м.

Продольное эквивалентное осевое усилие следует определять в зависимости от расчетных нагрузок и воздействий с учетом поперечных и продольных перемещений магистрали.

Выполняется расчет по следующей формуле –

S=100 [(0,5- μ)σкц+αE∆t]F

  • α – коэффициент линейного расширения материала трубы;
  • E – переменный параметр упругости;
  • ∆t – температурный расчетный перепад;
  • σкц – кольцевые напряжения от внутреннего расчетного давления;
  • F – площадь поперечного сечения трубопроводной магистрали.

Обратите внимание!
При определении устойчивости надземных магистралей, необходимо произвести расчет анкерных опор, арочных систем, анкерных висячих опор и прочих элементов конструкции на возможность сдвига и опрокидывания.

Поперечное усилие в трубе

Трубы прочности К55

Классы прочности стальных труб

Чтобы после выполнения всех необходимых расчетов прочности трубопровода легче было подобрать подходящие трубы, были введены классы прочности труб. В данном случае прочность изделий оценивается сопротивлением металла при растяжении.

Группа прочности труб обозначается буквой «К» и нормативным значением в кгс/мм2 от 34 до 65. К примеру, газопроводы в районах средней полосы, с учетом средней температуры окружающей среды около 0 градусов по Цельсию и рабочего давления в системе в 5,4 МПа, выполняют из труб класса прочности K52.

В условиях Крайнего Севера, где средняя температура составляет -20 градусов по Цельсию и рабочее давление в системе планируется в 7,4Мпа, выполняют газопроводы из труб класса прочности К55-К60.

Поперечное усилие в трубе

Монтаж трубы газопровода класса прочности К60

Расчет массы трубы

В большинстве случаев при расчете системы может потребоваться значение массы труб, к примеру, чтобы соотнести его с несущей способностью опор или просто спрогнозировать расходы на транспортировку.

Опоры трубопровода подбираются в соответствии с массой труб

Правда, для этого нет необходимости вычислять математическим методом, сколько весит конкретный отрезок той или иной трубы, так как справочная информация содержит точный вес погонного метра самых разных видов труб.

Достаточно лишь знать следующую информацию:

  • Материал трубы;
  • Внешний диаметр;
  • Толщину стенок и пр.

После того как вес одного погонного метра будет известен, это значение надо умножить на количество погонных метров.

Схема определения площади верхней поверхности трубы

Площадь внешней поверхности

При монтаже разных магистралей может потребоваться их утепление, гидроизоляция, покраска и пр. Для этого необходимо определить площадь трубопровода, что позволит посчитать количество материала. Чтобы выполнить данный расчет, надо длину окружности наружного сечения умножить на длину трубы.

Формула определения окружности выглядит следующим образом – L=πD. Длину отрезка трубы обозначим как H.

В таком случае площадь наружной окружности трубы будет выглядеть следующим образом – St=πDH м2, где:

  • St — площадь поверхности трубы, которая измеряется в метрах квадратных.
  • π – Число «пи», которое всегда равняется 3,14;
  • D — внешний диаметр;
  • H — как уже было сказано выше, обозначает длину трубы в метрах.

К примеру, имеется труба длиной 5 метров и диаметров 30 см. Ее площадь поверхности равняется St=πDH=3,14*0,3*5=4,71 квадратных метров.

На основе вышеприведенных формул также можно выполнить расчет объема трубопровода и площадь внутренних его стенок. Для этого надо лишь изменить в расчетах величину внешнего диаметра на величину внутреннего. Все эти параметры могут потребоваться при монтаже бытового трубопровода.

Вывод

Мы рассмотрели основы того, как выполняется расчет трубопроводов на прочность и устойчивость.

Конечно, при монтаже промышленных магистралей выполняется гораздо более сложное проектирование, которое подразумевает ряд других действий, поэтому данную работу выполняют исключительно профессионалы.

Однако, при устройстве бытовых системы, все необходимые значения можно узнать и самостоятельно.

Из видео в этой статье можно получить дополнительную информацию по данной теме.

Учет распора от давления и манометрического эффекта

Смотрите также

СТАРТ-ПРОФ автоматически учитывает следующие эффекты, связанные с наличием внутреннего давления в трубопроводе:

Распорные усилия от давления в незащемленных трубах

Поперечное усилие в трубе Поперечное усилие в трубе

Удлинение незащемленной трубы от действия внутреннего давления состоит из двух частей. Первая часть вызвана воздействием давления на концевые заглушки (отводы, ройники и т.д.). Вторая часть вызвана укорочением труб по закону Гука.

Читайте также:  Силовой зажим для труб

Удлинение трубы от действия продольной силы:

  • L – Длина трубы
  • E – Модуль упругости
  • Площадь поперечного сечения трубы

Поперечное усилие в трубе

  1. D – Наружный диаметр
  2. t – Толщина стенки
  3. N – Осевое внутренне усилие в трубе
  4. Осевая сила равна силе от давления на заглушку

Поперечное усилие в трубе

P – Внутреннее давление

Удлинение трубы равно

Поперечное усилие в трубе

Sh – Кольцевое напряжение в трубе

Поперечное усилие в трубе

Согласно закону Гука осевая деформации трубы равна:

Поперечное усилие в трубе

v – Коэффициент Пуассона

Поперечное усилие в трубе

Укорочение трубы от внутреннего давления равно:

Поперечное усилие в трубе

  • Полное удлинение трубы равно
  • Если добавить удлинение от температурных расширений, то :
  • DT – Разность монтажной и рабочей температуры
  • a – Коэффициент температурного расширения
  • Осевое напряжение, вызванное внутренним давлением равно

Распорные усилия от давления в защемленных трубах

  1. Для защемленной трубы между двумя мертвыми опорами удлинение равно нулю:
  2. Удлинение трубы от осевой нагрузки R равно:
  3. Следовательно, осевая нагрузка, необходимая, чтобы сжать трубу на величину DL равна:
  4. Если подставить вместо DL величину удлинения, полученную ранее, получим осевую нагрузку на опору, равную:
  5. Величина внутреннего осевого усилия в трубе N может быт получено из условия равновесия около мертвой опоры. Осевая сила равна нагрузке на опору минус сила распора от давления, которая воспринимается непосредственно опорой:
  6. Окончательное уравнение осевого внутреннего усилия в защемленной трубе:
  7. Осевое напряжение в защемленной трубе равно:

Частично защемленные трубы

Если между одной из мертвых опор и защемленной трубой добавить упругую пружинку с жесткостью k, то труба будет являться частично защемленной. Если жесткость пружинки нулевая – получим незащемленную трубу. Если жесткость бесконечная – получим полностью защемленную трубу.

Пропустим вывод уравнений и приведем сразу окончательные выражения в таблице ниже.

Значения “нагрузки на опору” так же можно назвать “эффективной продольная силой”. Эффективная продольная сила равна истинной осевой силе за вычетом усилия распора от давления.

Истинная и эффективная продольная сила в трубе

Истинная продольная сила используется для:

Эффективная продольная сила используется для:

Увидеть величину реальной и эффективной осевой силы можно в таблице “Внутренние усилия в участках” в локальных осях координат труб. Если галочка “Без учета распора от давления” не стоит, то мы видим истинную продольную силу в трубах. Если стоит, то видим эффективную продольную силу.

  • Почему именно эффективная осевая сила должна использоваться для проверки нагрузок на оборудования, а не истинная продольная сила в штуцере? Для этого следует мысленно поставить заглушку на трубе и штуцере оборудования:

На самом деле, в местах присоединения трубопровода к оборудованию нет заглушки, поэтому распорного усилия нет. Однако, для сравнения с допускаемыми нагрузками следует использовать эффективную осевую силу, т.к.

производители по методу конечных элементов определяют допускаемые внешние нагрузки для модели оборудования, находящегося под давлением с заглушкой на конце штуцера.

То есть напряжения, вызванные растяжением штуцера от давления, действующего на заглушку уже учтены в расчете сосудов и аппаратов и определяются предельные значения внешних нагрузок без учета распора от давления. Следовательно, для проверки прочности штуцера следует использовать эффективную осевую силу, а не истинную.

То же относится и ко всем другим видам оборудования (насосы, компрессоры и т.д.). В программе СТАРТ-ПРОФ в качестве нагрузок на все виды опор и оборудования выдаются эффективные осевые силы R, которые равны истинной осевой силе N за вычетом величины давления на заглушку

Точно такие же рассуждения применимы и для проверки герметичности фланцевых соединений. В формуле вычисления эффективного давления во фланцевом соединении уже есть составляющая от давления. Соответственно в качестве N мы должны прикладывать только дополнительные силы, вызванные другими нагрузками. Не давлением. То есть эффективную осевую силу.

При расчете продольной устойчивости трубопровода мы должны использовать эффективную осевую силу. Дело в том, что одно только внутреннее избыточное давление способно вызвать потерю устойчивости трубопровода.

Для того, чтобы объяснить этот феномен, представим себе деформированный вид трубопровода после потери устойчивости в виде ломаной, состоящей из двух труб (а).

Силы распора от давления прикладываются к концам труб в узле излома и их равнодействующая создает поперечное усилие S, которое стремится вывести трубу из равновесия, толкает вбок.

Теперь представим, что весь деформированный трубопровода описан в виде ломаной (b). В этом случае “толкающих” сил S будет уже несколько – в каждой вершине. И, наконец, если деформированный вид трубы описан плавной линией, то “толкающие” силы S превратятся в распределенную нагрузку поперек оси трубы.

  1. Пропустим вывод уравнений, укажем только, что для проверки продольной устойчивости должна быть использована именно эффективная осевая сила R и в случае действия одного только избыточного внутреннего давления она оказывается сжимающей:

Также, этот феномен можно себе представить как потерю устойчивости воды внутри трубы. Вода (или другой продукт), сжата большой осевой силой (т.к. находится под давлением), и при потере устойчивости толкает трубу в поперечном направлении. То есть “воду” внутри трубы можно представить себе как сжатый стержень, теряющий устойчивость.

Учет распорных усилий в СТАРТ

  • Во-первых, СТАРТ-Проф прикладывает растягивающие распорные усилия от давления по концам каждой трубы
  • Во-вторых, помимо температурного расширения, СТАРТ-Проф учитывает дополнительное укорочение каждой трубы от внутреннего давления:

Комбинация этих двух эффектов и называется учетом распора от давления. Такая модель позволяет корректно моделировать любые виды трубопроводов: защемленные, незащемленные и частично защемленные.

Особенно важен учет распора от давления для:

  • Трубопроводов высокого давления
  • Длинных магистральных трубопроводов
  • Трубопроводов из термопластиков (PE, PP, PB, PVC)
  • Трубопроводов из стеклопластика

В таких трубопроводах влияние распора от давления очень существенно и игнорировать его нельзя.

Учет распорных усилий и перемещений при наличии осевых компенсаторов

От внутреннего давления возникают неуравновешенные силы, действующие на заглушки и гофры сильфонных и линзовых компенсаторов (рис. 3, а), под действием этих сил незакрепленный трубопровод растягивается (рис. 3, б). Если трубопровод зажат между опорами, то не имея возможности растянуться, он передает распорные усилия на опоры (рис. 3, в).

Рис. 3. Распорные усилия, передаваемые на опоры в трубопроводах с осевыми компенсаторами и без

  1. Распорное усилие, передаваемое на опоры в прямой трубе (“давление на заглушку”) равно (рис. 4, а):
  2. P*Acap
  3. Распорное усилие, передаваемое на опоры в осевом неразгруженном компенсаторе (рис. 4, б) равно
  4. P*Aeff
  5. Распорное усилие, передаваемое на опоры в осевом разгруженном компенсаторе (рис. 4, в) равно 0
  6. Нагрузка от давления на оборудование складывается из давления на заглушку Acap и давления на “лишнюю” площадь гофр компенсатора (Aeff-Acap), таким образом, получается нагрузка Aeff.

Эффективные площади трубы и осевого компенсатора вычисляются по формулам на рис. 5.

Рис. 5. Эффективные площади для трубы и осевого неразгруженного компенсатора

Расчетная модель осевого компенсатора в СТАРТ-ПРОФ показана на рис. 6. Давление в трубе уравновешивает часть распорного усилия в осевом неразгруженном компенсаторе, поэтому при расчете, в узлах по обе стороны от осевого компенсатора прикладываются нагрузки, равные разности распорных усилий в трубе и в осевом компенсаторе. Давление на отводы будет равно .

Рис. 6. Работа осевого неразгруженного компенсатора

Если эффективная площадь компенсатора задана равной 0, то нагрузка на отводы будет равна 0 (см. рис. 7).

Рис. 7. Работа осевого разгруженного компенсатора

Учет манометрического эффекта

«Манометрический эффект» – это распрямление отвода, имеющего начальную овальность, под действием внутреннего давления (рис. 8). Этот эффект влияет на результирующие перемещения и нагрузки на опоры. Манометрический эффект проявляется только при величине коэффициента овальности a > 0.

Рис. 8

Для моделирования манометрического эффекта к отводам автоматически прикладываются изгибающие моменты Mэ, действующие в плоскости отвода (рис. 3). Их величина вычисляется по формуле, полученной в соответствии с [2] и [3]:

  • ,
  • где
  • a0 – коэффициент овализации, %
  • Кp – коэффициент податливости отвода,
  • Kэ – коэффициент, характеризующий влияние эллиптичности поперечного сечения на искривление оси отвода,
  • R – радиус оси отвода.

Список литературы

1. Айнбиндер А.Б. Расчет магистральных и промысловых трубопроводов на прочность и устойчивость. М. “Недра”, 1991

2. Костовецкий Д.Л. Прочность трубопроводных систем энергетических установок. СПб.: “Энергия”, 1973

3. Зверьков Б.В., Костовецкий Д.Л., Кац Ш.Н., Бояджи К.И. Расчет и конструирование трубопроводов. Справочное пособие. СПб.: “Машиностроение”, 1979

Расчет нагрузки на профильную трубу

Выбирая профильный прокат, клиент должен осознать, что точные вычисления возможных нагрузок, в зависимости от линейных и иных параметров стояков – очень важны. Любая создаваемая конструкция рассчитана на конкретный вес.

  • Категорически запрещается размещать на ней соединения, предметы, масса которых, с учетом воздействия погодных факторов, будет больше допустимой.
  • Чтобы знать, для чего нужен расчет нагрузки на профильную трубу, посмотрим, где она используется.
  • Стояки с профильным сечением нашли свое применение в различных сферах жизнедеятельности человека.
  • С их помощью:
  • монтируются навесы на балконах, верандах, возле частных домов;
  • собираются лестницы, подиумы, сцены.

Поперечное усилие в трубе

Этот список можно продолжать, но главное, что нужно запомнить:

чтобы конструкции были безопасными, надежными, служили долго необходимо провести расчет вертикальной нагрузки на профильную трубу. Если этого не сделать, то система может не выдержать веса, что приведет к нежелательным последствиям.

Популярность профильных труб объясняется низкой стоимостью, небольшой массой, высокой прочностью при изгибе. Выбирая прокат с прямоугольным или квадратным сечением, большинство заказчиков понимают важность расчета нагрузки на профильную трубу. Учитывается соответствие линейных размеров профилей к возможной силе механического воздействия на деталь.

Что будет, если не учесть возможного воздействия тяжести на конструкцию? О таком думать даже нельзя, поскольку при воздействии максимально допустимого веса возможны 2 варианта:

  • безвозвратный изгиб трубы, поскольку она потеряет свою упругость;
  • разрушение целой конструкции, что чревато негативными последствиями.

Не всегда требуется расчет

Если вы решили использовать профильную трубу для сооружения калитки, ограждения, перил, то расчет на изгиб проводить не обязательно, поскольку нагрузка на такие системы – минимальная.

Поперечное усилие в трубе

Для точности и быстроты расчета нагрузки на профильную трубу можно воспользоваться калькулятором или программой SketchUP. (Скачать торрентом — Официальная русская версия! Разрядность: 64bit, Язык интерфейса: Русский, Таблетка: Присутствует)

Читайте также:  Как кладут трубы газа в море

Расчет будет правильным при соблюдении таких 3-ех условий:

  1. Если в системе будут опоры и верхняя рама, в которых будут возникать механические (не электрические!) напряжения, то усилия будут распределяться между несколькими стояками, в зависимости от их соединения между собой.
  2. Достаточно большая высота системы способна уменьшить несущую способность отдельных опор. Связано это с появлением крутящего момента в стояках.
  3. Чтобы получить надежную металлоконструкцию большой высоты, нужно добавить дополнительные опоры. Благодаря ребрам жесткости, которыми будут связаны между собой стояки, механическое напряжение сможет распределиться более равномерно.

Выполняя непосредственные вычисления, необходимо владеть информацией о:

1. Типах возможных нагрузок.

Они могут быть:
Поперечное усилие в трубе

  • стабильными, при которых учитывается вес деталей конструкции, масса грунта, давление кровли и т.п.;
  • долговременными, которые будут действовать на протяжении большого периода, но могут измениться в любой момент: масса котла, лестничного марша, стен из кирпича;
  • кратковременными, действующие на протяжении малого промежутка (атмосферные осадки, масса посетителей, транспортных средств);
  • особыми, что вызываются непредвиденными обстоятельствами: ливнями, землетрясениями, извержениями вулканов, взрывами и пр…

2. Размерах профильных труб, формы сечений.

3. Суммарном напряжении строения.

4. Прочностных характеристиках стали.

Для расчета нагрузки на профильную трубу пользуются:

  • таблицами;
  • математическими формулами;
  • специальным онлайн калькулятором.

Применяем таблицы

При применении первого метода нужно сопоставление физических характеристик трубы, которая будет применяться для сооружения системы, с табличными данными. Для этого берут значения величин из таблиц 1 или 2, в зависимости от типа профиля.

Таблица 1. Нагрузки для стояков квадратного сечения

Сечение,
мм
Максимально возможная масса, кг
Длина пролета, м
1 2 4 6
40х40х2 709 173 35 5
50х50х2 1165 286 61 14
60х60х3 2393 589 129 35
80х80х3 4492 1110 252 82
100х100х4 9217 2283 529 185
140х140х4 19062 4736 1125 429

Таблица 2. Нагрузки для стояков прямоугольного сечения
(для вычислений используют длинную сторону)

Сечение,
мм
Максимально возможная масса, кг
Длина пролета, м
1 3 4 6
50х25х2 684 69 34 6
60х40х3 1255 130 66 17
80х40х3 2672 281 146 43
80х60х3 3583 380 199 62
100х50х4 5489 585 309 101
120х80х3 7854 846 455 164

Эти таблицы имеют данные о максимально допустимых массах. При таком воздействии на профиль труба не разрушится, а лишь согнется.

Но стоит увеличить массу хотя бы на 0,5 кг, система может полностью деформироваться, что приведет к разрушению.

В связи с этим, на практике выбирается деталь прямоугольного или квадратного сечения, запас прочности которой был бы большим от минимального хотя бы в 2 раза.

Преимущества табличного метода

Табличный метод отличается высокой точностью. Для его применения нужно обладать информацией о видах опор, способах фиксации на них профилей, типах нагрузок.
Поперечное усилие в трубе
Кроме этого, для полных расчетов нагрузок необходимо иметь данные о:

  • моментах инерции профильной прямоугольной или квадратной трубы, значение которых можно взять из таблиц, начиная от сечений 15х15х1 5 и оканчивая 100х100х4 и выше;
  • длине пролетов;
  • величине тяжести на каждый стояк;
  • коэффициентах модулей упругости (взять из СНиП).

Масса 1 м.п. профиля 15х15х1,5 составляет 0,606 кг. Исходя из этого, можно провести соответствующие вычисления.

После этого переходим к специальным формулам, то есть, к математическому методу. В соотношениях показано, как связаны между собой данные физические величины, как найти неизвестную величину, имея 2 или больше известных параметра и пр.

А может лучше калькулятором?

Быстрее всего можно провести расчеты с применением калькулятора. Особенность такой программы состоит в том, что необходимо ввести нужные параметры, характеристики изделий, линейные размеры, иные свойства будущей конструкции. В конце онлайн калькулятор выдаст расчет нагрузки профильной трубы для заданных параметров.

Важно! Для расчета нагрузок нужно пользоваться специальными онлайн калькуляторами, которые размещены на сайтах надежных компаний.
Только в таком случае окончательные данные по обустройству системы будут правильными. Сама же конструкция при этом будет прочной и полностью безопасной.Поперечное усилие в трубе
С помощью калькулятора можно провести расчет не только вертикальной, но и поперечной нагрузки на профильную трубу. То есть, использование таких вычислительных схем позволяет определить, как может распределяться вес по всей системе.
Важно! Лучше всего воспользоваться услугами лиц, которые знакомы с ГОСТами, разбираются в строительстве, сопромате, имеющие опыт работы с аналогичными программами.

Что в первую очередь рассчитывают при помощи формул

Вычисляют многие параметры.

Чаще других ищут:

  1. Допустимый уровень напряжения при изгибах. Используется формула
    Р= M/W,
    где Р – возможное напряжение при изгибе,
    М – значение изгибающего момента силы,

    W – механическое сопротивление.

  2. Требуемое сечение стояка:
    F = N/R,
    где F – необходимая площадь сечения (см²),
    N – действующая масса (кг),

    R – значение сопротивления металла при деформациях, соответственно пределу текучести (кг/см²).

Значения физических величин можно отыскать в специальных таблицах.

Применение

Круглые трубы можно встретить в любом месте. Опоры, стойки, колонны, емкости – это далеко не полный перечень использования обечаек (обечайка – металлический лист цилиндрической формы без торцов).

Кольцевой трубный профиль можно встретить при прокладке водо-, нефте-, газопроводов как в быту, так ив промышленных масштабах. Они – отличный материал для столбиков ограждений, ворот, калиток.

Благодаря наличию замкнутого контура, круглая труба обладает существенным преимуществом в сравнении со швеллерами, уголками аналогичных линейных параметров.

Многие думают, что для того, чтобы определить прочность стояка, вдоль оси при нагрузке сжимающего характера, нужно иметь данные о величине нагрузки и площади сечения.

В результате деления первого параметра на второй, получил искомую прочность. После сравнения полученного параметра с допускаемым значением, взятого с таблицы, делают вывод о том, можно ли такую нагрузку давать на конкретный стояк, или нельзя.

Если число будет меньше допускаемого, то все хорошо. Но тут есть одно но: вычисления справедливые для растягивания, а не для сжатия.

Пользуемся калькулятором

Для варианта со сжатием круглой стойки, можно провести необходимые расчеты с использованием онлайн калькулятора.

Сначала необходимо ознакомиться с дополнительными понятиями. Сюда относят:

  1. Потерю общей устойчивости.
    Проверка потери нужна для избегания огромных потерь иного типа.
  2. Потерю местной устойчивости.
    Речь идет о более раннем «заканчивании» жесткости стенок стояка при действии нагрузки на обечайку. Иначе говоря, труба начинает заламываться вовнутрь, а сечение круглого вида превращается в профиль неправильной криволинейной формы, что ведет к потере устойчивости.

Использование Excel

Существует специальная программа в Excel комплексной проверки расчета стояков относительно устойчивости и прочности. Основу данной программы составляют данные ГОСТа 14249 89. С ее помощью можно вычислить максимальную нагрузку на круглую трубу, а также усилия общего характера на обечайку круглого сечения.

В интернете можно часто встретить такие вопросы: «Какую нагрузку выдерживает круглая труба длиной 3, 4, 6 метров? Как это вычислить с помощью онлайн калькулятора? Можно ли это сделать самостоятельно?»

Поперечное усилие в трубе

Какие данные нужны

Алгоритм работы с программой состоит в следующем:

  1. Сначала нужно открыть ГОСТ 14249 89, из которого необходимо выписать первых 5 исходных значений. Для быстрого отыскания параметров воспользоваться примечаниями к каждой ячейке.
  2. Заполнить ячейки D8, D9, D10, вписывая в них линейные параметры стояков.
  3. В ячейки от D11 до D15 внести возможные нагрузки.

Важно! Если на обечайку будет действовать внутреннее избыточное давление, то значение наружного давления равняется нулю. Аналогично: при воздействии на стояк внешнего избыточного давления, параметр внутреннего давления также будет равным нулю.
В данном случае будем рассматривать воздействие сжимающей осевой центральной силы.
Важно! Помните, что примечания к каждой ячейке в столбце «Значение» содержат в себе ссылку номеров нужной формулы, необходимой таблицы или чертежа из ГОСТа 14249 89.
Поперечное усилие в трубе

Что получилось в результате

Нужно не только уметь пользоваться программой, но также уметь объяснить полученные результаты.

Необходимо сопоставить отношение действующей нагрузки к допускаемой: при получении числа, большего за единицу, труба – перегруженная. В противном случае – заданный вес стояк выдержит, при условии, что расчет нагрузки на трубу круглого сечения проведен правильно.

Важно! Пользователь должен увидеть значение суммарного влияния всех действующих сил и давлений.
Как видим, заданная схема крепления концов трубы может выдержать силу 4 тыс. 700 ньютонов, что соответствует массе примерно 470,103 кг. Нужно также учесть запас прочности, что составляет около 2%.

Обобщив вышесказанное, мимолетом напрашивается мысль: во избежание малейших просчетов, которые чреваты серьезными последствиями, не старайтесь проводить вычисления самостоятельно, если вы не специалист. В таком случае все пользователи сооружений останутся живы-здоровы, а конструкция будет приносить только радость.

Вам также может понравиться

Самостоятельный гидравлический расчет трубопровода

  • Содержание: [Скрыть]

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя.

Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Поперечное усилие в трубе

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.
Читайте также:  Устройство запорной арматуры пластиковых окон

Поперечное усилие в трубеУсловный диаметр (проход) трубопровода (DN) – это условная  безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода.

Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.

Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний,  по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Поперечное усилие в трубе

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re

Основы расчета трубопроводов на прочность

Поперечное усилие в трубеРасчет трубопровода на прочность

Еще недавно расчет трубы на прочность по аналогии с другими напорными трубопроводами ограничивался расчетом на действие внутреннего давления теплоносителя. Все остальные нагрузки и внешние воздействия учитывались косвенно — путем произвольного повышения коэффициента запаса прочности, т. е. понижения допускаемого напряжения при расчете труб на разрыв.

Это приводило к чрезмерному утолщению стенок труб и, следовательно, к перерасходу металла.

Необходимость в пересмотре и уточнении устаревших методов расчета назрела уже давно, однако и до настоящего времени не разработаны нормативы для расчета прочности теплофикационных труб, аналогичные существующим для труб другого назначения (например, для трубопроводов энергетических установок — котельных и электростанций — или для магистральных трубопроводов для транспорта нефти и газа). Указанное обстоятельство затрудняет проектирование, а в ряде случаев тормозит внедрение прогрессивных технических решений и экономичных конструкций, позволяющих получить экономию трубного металла.

  • В комплекс расчета трубопровода на прочность входят:
  • а) расчет напряжений, вызванных внутренним давлением теплоносителя, и определение толщины стенок труб;
  • б) расчеты на компенсацию температурных удлинений;
  • в) расчет напряжений и усилий в трубах от весовых нагрузок и от сил трения в опорах;
  • в) расчет напряжений от сил трения в грунте при бесканальной прокладке теплопроводов;
  • д) расчет усилий, действующих на неподвижные опоры.
  • Кроме того, при проектировании может встретиться необходимость в дополнительных расчетах, например напряжений, вызванных неравномерным распределением температуры по высоте сечения трубы в пусковом периоде (например, в наружных паропроводах), или напряжений от ветровых нагрузок при надземной прокладке.
  • Трубопроводы, служащие для транспорта тепла при повышенных параметрах (давление пара выше 16 кГ/см2, температура выше 250 0С), должны рассчитываться по «Нормам расчета элементов паровых котлов на прочность».

Для расчета теплофикационных трубопроводов с давлением теплоносителя не выше 16 кГ/см2 и температурой не выше 200—250°С необходимо пользоваться нормами проектирования магистральных трубопроводов (СНиП II-Д.

10-62), которые разработаны на основе метода предельных состояний.

Этот метод используется в настоящее время в расчетах на прочность строительных конструкций как наиболее прогрессивный по сравнению с расчетами, основанными на допускаемых напряжениях.

Указания СНиП II-Д.10-62 распространяются на «холодные» трубопроводы, и в них не учитывается снижение прочности стали под влиянием температуры. Для теплофикационных трубопроводов, большинство из которых нагревается до температуры 150°С лишь в течение небольшого количества часов в году, это снижение также может не учитываться, так как оно не превышает 4—5%.

СНиП II-Д. 10-62 уже давно устарел и заменен на более актуальный.

Для расчета трубы на прочность еще в 1965 году начали применять программу СТАРТ ПРОФ, которая позволяет выполнить не только расчет трубопровода на прочность, но и расчет на прочность сварных соединений, а также расчет на прочность при растяжении и сжатии трубопровода и компенсаторов, будь то сальниковый компенсатор или сильфонный компенсатор.

В 2020 году по числу пользователей программа СТАРТ ПРОФ обогнала своих конкурентов — это программу АСТРА-НОВА и программу CAESAR II. К тому же программой СТАРТ ПРОФ пользуются не только в России, но и по всему миру, как и его конкуренты.

Для Вас мы готовы выполнить расчет трубы на прочность в программе СТАРТ ПРОФ для тепловых сетей. Так что присылайте исходные данные для расчета (план тепловой сети, профиль тепловой сети, узлы и камеры и т.п.) на нашу электронную почту: tesrf77@gmail.com.

Нагрузки, действующие на трубопровод и его напряженное состояние, существенно зависят от способа прокладки.

При прокладке в непроходных подземных каналах и проходных туннелях трубы полностью разгружены от веса грунта, воздействия нагрузок от транспорта и ветровых нагрузок. Трубопровод, уложенный на подвижные опоры (скользящие или катковые), представляет многопролетную неразрезную балку.

Наряду с напряжениями от собственного веса бН трубы испытывают также продольные ба и тангенциальные напряжения от бt внутреннего давления, а также компенсационные напряжения бK.

При неравномерной осадке опор напряжения бН могут сильно возрасти. Как показали многочисленные вскрытия теплопроводов канальной и бесканальной прокладок, неравномерные осадки труб происходят чаще всего по следующим причинам:

а) неодинаковая плотность грунта по длине трассы вследствие его неоднородности. Особенно часто это встречается в условиях городских сетей, прокладываемых на небольшой глубине, где встречаются насыпные грунты, прослойки органического происхождения и т. п.;

б) неправильное ведение земляных работ по разработке траншей, когда в местах излишнего заглубления допускается местная подсыпка рыхлых грунтов.

Напряжения от изгиба в стенках труб могут возрасти и в результате неверной установки опор, если уклон оси труб не проверяется в процессе монтажа.

В связи с этим рекомендуется уменьшать расстояния между опорами в непроходных каналах по сравнению с расстояниями, принятыми для проходных туннелей.

Стоимость опор простейшего (скользящего) типа невелика, и поэтому установка дополнительных опор не вызовет существенного удорожания.

Максимальные напряжения в подземных теплопроводах, уложенных в каналах, чаще всего возникают около неподвижных опор, где действуют максимальные компенсационные усилия и максимальные изгибающие моменты от весовых нагрузок.

При надземной прокладке трубопроводов на мачтах, столбах и эстакадах с пролетным строением, а также на подвесных опорах наибольшие напряжения в трубах вызывают весовые нагрузки. Дополнительной нагрузкой здесь является ветровая.

Вызываемые ею напряжения в трубах малого диаметра приблизительно равны напряжениям от внутреннего давления теплоносителя.

В трубах среднего диаметра они снижаются до половины, а в трубах большого диаметра — до 0,1 напряжения от внутреннего давления.

  1. К дополнительным напряжениям относятся напряжения изгиба, вызванные осадкой подвесных опор труб.
  2. Значительно отличаются от рассмотренных выше условия работы бесканальных теплопроводов.
  3. Различаются две основные конструкции бесканальных теплопроводов: разгруженные и неразгруженные.

К первым относятся трубопроводы, проложенные в жестких изоляционных оболочках с небольшим воздушным зазором между трубой и изоляцией (например, в цилиндрических оболочках, собранных из сегментов); ко вторым — трубопроводы, проложенные в оболочках из армопенобетона без воздушных зазоров, и бесканальные прокладки с засыпной изоляцией.

В разгруженных теплопроводах нагрузка от грунта полностью или частично воспринимается жесткой изоляционной оболочкой, и силы трения между неподвижной оболочкой и трубой поэтому имеют относительно небольшую величину. В неразгруженной конструкции силы трения достигают значительно большей величины, так как перемещения труб здесь происходят совместно с пенобетонной оболочкой.

При засыпной изоляции силы трения также велики, так как давление грунта полностью передается на поверхность труб. Определение напряжений в стенках бесканальных теплопроводов осложняется неопределенностью и изменчивостью величины давления грунта на трубы.

Несмотря на большое количество проведенных теоретических и экспериментальных исследований, задача определения давления грунта на трубы (как и на другие подземные сооружения) еще не может считаться окончательно разрешенной. Давление грунта зависит от целого ряда факторов, учесть которые в теоретических расчетах весьма трудно.

Существует большое число формул, предложенных разными, авторами для определения давления на подземные трубопроводы, которые значительно отличаются друг от друга, как в расчетных предпосылках, так и по результатам расчета.

Существенное влияние на прочность бесканальных теплопроводов оказывают неравномерные осадки грунта под трубами. В местах прохода через камеры трубопровод опирается на их стены. Здесь в большинстве случаев создается защемление трубопровода при его изгибе в вертикальной плоскости под действием весовой нагрузки и давления грунта.

Проверка на продольный изгиб при сжатии необходима для прямолинейных участков трубопровода большой длины с сальниковыми (или манжетными) компенсаторами. Под действием осевых усилий сжатия такие трубопроводы могут потерять устойчивость, что не допустимо при установке сальниковых компенсаторов.

Если Вам нужен расчет трубопровода на прочность в программе СТАРТ-ПРОФ, пиши на нашу почту, мы с удовольствием для Вас выполним расчет трубы на прочность.

Ссылка на основную публикацию
Adblock
detector