Резистор: классификация и принцип работы

Резисторы: назначение, классификация и параметры (стр. 1 из 2)

Резисторы: назначение, классификация и параметры

Резисторы предназначены для перераспределения и регулирования электрической энергии между элементами схемы. Принцип действия резисторов основан на способности радиоматериалов оказывать сопротивление протекающему через них электрическому току. Особенностью резисторов является то, что электрическая энергия в них превращается в тепло, которое рассеивается в окружающую среду.

Классификация и конструкции резисторов

По назначению дискретные резисторы делят на резисторы общего назначения, прецизионные, высокочастотные, высоковольтные, высокоомные и специальные. По постоянству значения сопротивления резисторы подразделяют на постоянные, переменные и специальные.

Постоянные резисторы имеют фиксированную величину сопротивления, у переменных резисторов предусмотрена возможность изменения сопротивления в процессе эксплуатации, сопротивление специальных резисторов изменяется под действием внешних факторов: протекающего тока или приложенного напряжения (варисторы), температуры (терморезисторы), освещения (фоторезисторы) и т. д.

По виду токопроводящего элемента различают проволочные и непроволочные резисторы. По эксплуатационным характеристикам дискретные резисторы делят на термостойкие, влагостойкие, вибро- и ударопрочные, высоконадежные и т. д.

Основным элементом конструкции постоянного резистора является резистивный элемент, который может быть либо пленочным, либо объемным. Величина объемного сопротивления материала определяется количеством свободных носителей заряда в материале, температурой, напряженностью поля и т. д. и выражается известным соотношением

(2.1)

где ρ — удельное электрическое сопротивление материала;

l — длина резистивного слоя;

S — площадь поперечного сечения резистивного слоя.

В чистых металлах всегда имеется большое количество свободных электронов, поэтому они имеют малое ρ и для изготовления резисторов не применяются. Для изготовления проволочных резисторов применяют сплавы никеля, хрома и т. д., имеющие большое ρ.

Для расчета сопротивления тонких пленок пользуются понятием удельного поверхностного сопротивления ρs под которым понимают сопротивление тонкой пленки, имеющей в плане форму квадрата. Величина ρs связана с величиной ρ и легко может быть получена из (2.1), если принять в ней S = δw где w — ширина резистивной пленки. δ — толщина резистивной пленки.

Тогда

(2.2)

Где- удельное поверхностное сопротивление, зависящее от толщины пленки δ. Если l=w, то R=ρS , причем значение сопротивления не зависит от размеров сторон квадрата.

На рис. 2.1 представлено устройство пленочного резистора. На диэлектрическое цилиндрическое основание 1 нанесена резистивная пленка 2. На торцы цилиндра надеты контактные колпачки 3 из проводящего материала с припаянными к ним выводами 4. Для защиты резистивной пленки от воздействия внешних факторов резистор покрывают защитной пленкой 5.

Сопротивление такого резистора определяется соотношением

(2.3)

где l — длина резистора (расстояние между контактными колпачками); D — диаметр цилиндрического стержня.

Такая конструкция резистора обеспечивает получение сравнительно небольших сопротивлений (сотни Ом). Для увеличения сопротивления резистивную пленку 2 наносят на поверхность керамического цилиндра 1 в виде спирали (рис. 2.2).

Сопротивление такого резистора определяется соотношением

(2.4)

где t – шаг спирали;

α – ширина канавки (расстояние между соседними витками спирали);

– число витков спирали.

На рис. 2.3 показана конструкция объемного резистора, представляющего собой стержень 1 из токопроводящей композиции круглого или прямоугольного сечения с запрессованными проволочными выводами 2. Снаружи стержень защищен стеклоэмалевой или стеклокерамической оболочкой 3. Сопротивление такого резистора определяется соотношением (2.1).

Постоянный проволочный резистор представляет собой изоляционный каркас, на который намотана проволока с высоким удельным электрическим сопротивлением. Снаружи резистор покрывают термостойкой эмалью, опрессовывают пластмассой или герметизируют металлическим корпусом, закрываемым с торцов керамическими шайбами.

Выбор типа для конкретной схемы производится с учетом условий работы и определяется параметрами резисторов.

Резистор нельзя рассматривать как элемент, обладающий только активным сопротивлением, определяемым его резистивным элементом.

Помимо сопротивления резистивного элемента он имеет емкость, индуктивность и дополнительные паразитные сопротивления. Эквивалентная схема постоянного резистора представлена на рис. 2.7.

На схеме RR — сопротивление резистивного элемента, Rиз — сопротивление изоляции, определяемое свойством защитного покрытия и основания, Rк — сопротивление контактов, LR — эквивалентная индуктивность резистивного слоя и выводов резистора, СR — эквивалентная емкость резистора, Ск1 и Ск2 — емкости выводов. Активное сопротивление резистора определяется соотношением

(2.5)

Сопротивление Rк имеет существенное значение только для низкоомных резисторов. Сопротивление Rиз практически влияет на общее сопротивление только высокоомных резисторов. Реактивные элементы определяют частотные свойства резистора. Из-за их наличия сопротивление резистора на высоких частотах становится комплексным. Относительная частотная погрешность определяется соотношением

(2.6)

где Z — комплексное сопротивление резистора на частоте ω.

На практике, как правило, величины L и С неизвестны. Поэтому для некоторых типов резисторов указывают значение обобщенной постоянной времени τ m ах , которая связана с относительной частотной погрешностью сопротивления приближенным уравнением:

(2.7)

Частотные свойства непроволочных резисторов значительно лучше, чем проволочных.

Параметры резисторов

Параметры резисторов характеризуют эксплуатационные возможности применения конкретного типа резистора в конкретной электрической схеме.

Номинальное сопротивление Rном и его допустимое отклонение от номинала ±∆ R являются основными параметрами резисторов. Номиналы сопротивлений стандартизованы в соответствии с ГОСТ 28884 – 90.

Для резисторов общего назначения ГОСТ предусматривает шесть рядов номинальных сопротивлений: Е6, Е12, Е24, Е48, Е96 и Е192.

Цифра указывает количество номинальных значений в данном ряду, которые согласованы с допустимыми отклонениями (табл. 2.1).

Номинальные значения сопротивлений определяются числовыми коэффициентами, входящими в табл. 2.1, которые умножаются на 10n , где п — целое положительное число. Так, например, числовому коэффициенту 1,0 соответствуют резисторы с номинальным сопротивлением, равным 10, 100, 1000 Ом и т. д.

Номинальная мощность рассеивания Рном определяет допустимую электрическую нагрузку, которую способен выдержать резистор в течение длительного времени при заданной стабильности сопротивления.

Как уже отмечалось, протекание тока через резистор связано с выделением тепла, которое должно рассеиваться в окружающую среду. Мощность, выделяемая в резисторе в виде тепла, определяется величиной приложенного к нему напряжения U и протекающего тока I и равна

(2.8)

Мощность, рассеиваемая резистором в окружающую среду, пропорциональна разности температур резистора ТR и окружающей среды Т0 :

(2.9)

Эта мощность зависит от условий охлаждения резистора, определяемых значением теплового сопротивления RT , которое тем меньше, чем больше поверхность резистора и теплопроводность материала резистора.

Из условия баланса мощностей можно определить температуру резистора, что наглядно показано на рис. 2.8, а.

Если

(2.10)

Следовательно, при увеличении мощности, выделяемой в резисторе, возрастает его температура ТR , что может привести к выходу резистора из строя. Для того чтобы этого не произошло, необходимо уменьшить RT , что достигается увеличением размеров резистора.

Для каждого типа резистора существует определенная максимальная температура Tmax , превышать которую нельзя. Температура ТR , как следует из вышеизложенного, зависит также от температуры окружающей среды. Если она очень высока, то температура ТR может превысить максимальную.

Чтобы этого не произошло, необходимо уменьшать мощность, выделяемую в резисторе (рис. 2.8, б). Для всех типов резисторов в ТУ оговаривают указанные зависимости мощности от температуры окружающей среды (рис. 2.8, в).

Номинальные мощности стандартизованы (ГОСТ 24013-80 и ГОСТ 10318-80 ) и соответствуют ряду: 0,01; 0,025; 0,05; 0,125; 0,25; 0,5; 1; 1,2; 5; 8; 10; 16; 25; 50; 75; 100; 160; 250; 500.

Источник: http://MirZnanii.com/a/322635/rezistory-naznachenie-klassifikatsiya-i-parametry

Из чего состоит и как выглядит резистор, предназначение в электрической цепи, принцип работы и маркировка

Чайники, лампы накаливания, электрооборудование машины и многие другие электроприборы содержат резисторы. Они настолько видоизменились, что без знания отличительных признаков их порой трудно определить.

В справочниках дается определение: резистор — это элемент с заданным постоянным или переменным сопротивлением. На практике — это множество элементов, которые используются в самых неожиданных конструкциях.

Чтобы понять из чего состоит резистор, необходимо узнать, из какого материала он изготавливается.

Самый простой резистор — это реостат. На каркас наматывается проволока с большим сопротивлением и подключается к источнику питания. Исходя из этого можно сделать вывод: первое требование для этого элемента — высокоомный проводник. Для производства этого элемента используют:

  • проволоку;
  • металлическую пленку, металлическую фольгу;
  • композитный материал;
  • полупроводник.

Металлическую фольгу из высокоомного материала наматывают на каркас. При необходимости увеличить сопротивление ее разрезают на дорожку, тем самым увеличивая длину, и соответственно, сопротивление. Металлопленочный резистор получают напылением металла на основу.

В качестве композитного материала используют графит с органическими или неорганическими добавками. Резистор может полностью состоять из такого материала или из дорожки, на которую нанесен этот материал.

С началом производства микросхем появились новые резисторы, которые называются интегральные. Производство выполняется на молекулярном уровне. На высоколегированный полупроводник напыляют тонкий слой высокоомного металла, что и выполняет функцию резистора.

Разделение по видам

Поскольку сопротивление — одна из самых используемых форм деталей, то и применение его очень разнообразно. В зависимости от назначения резистора его можно разделить на три категории:

  • постоянные;
  • подстроечные;
  • регулирующие.

Первая категория — постоянные резисторы — имеют заданное сопротивление и больше остальных используются в электрических схемах. Тем не менее сопротивление все равно зависит от внешних факторов. По этому признаку их квалифицируют на следующие виды:

Линейные названы так, потому что их сопротивление меняется плавно, то есть линейно, в зависимости от внешнего влияния. У нелинейных такой плавности нет. Например, если измерить сопротивление лампы накаливания в холодном состоянии, то оно будет одно, а в горячем — совсем другое, причем в 10—15 раз больше.

Если существует такое многообразие, то возникает закономерный вопрос — как понять где резистор? На самом деле резистор может выглядеть как круг, трубка или квадрат. Они выпускаются различных форм, размеров, окрасок. Порой чтобы определить, что это резистор, необходимо посмотреть электрическую принципиальную схему.

Следующая категория — регулировочные. Название здесь говорит само за себя. Они предназначены для регулировок, а значит, должны менять свое сопротивление. В отличие от постоянных, у которых два вывода, у этих имеется три вывода.

Два из них подключаются к самому резистору, а третий — к подвижному контакту, который соединен с вращающимся элементом.

Если подключить питание к двум выводам, то на подвижном контакте будет другое напряжение, которое будет отличаться от напряжения на выводах этого элемента.

Если подключить регулировочный (переменный) резистор последовательно с батарейкой, соединить лампочку одним выводом с минусовой клеммой батарейки, а другой с выводом подвижного контакта, то при вращении рукоятки переменного резистора будет заметно, как меняется яркость лампочки. Почему такое происходит можно понять, если разобраться что делает резистор.

Использование в электрической схеме

Яркость лампочки зависит от тока, протекающего по нити накаливания — чем больше ток, тем ярче горит лампочка. По закону Ома ток можно высчитать разделив напряжение на сопротивление, значит, чем меньше сопротивление, тем больше ток. На практике работать это будет следующим образом.

Допустим, лампочка рассчитана на напряжение в 9 В, имеет сопротивление 70 Ом (в рабочем, горячем состоянии), батарея на 9 в и переменное сопротивление 100 Ом.

Для нормальной работы ток, проходящий через лампочку, должен быть примерно 0,13 А (напряжение батареи 9 В делится на сопротивление лампочки 70 Ом).

В эту цепь последовательно подсоединяется переменный резистор в 100 Ом, ток цепи составит примерно 0,05 А (напряжение батареи 9 В делится на общее сопротивление 170 Ом), — это примерно треть от требуемого тока и лампочка, следовательно, не будет гореть.

В этом случае резистор помогает плавно гасить свет. Подобный принцип используется, например, в кинотеатрах. Если батарея на 9 В, а лампочка рассчитана на 2,5 В, то для ее нормальной работы необходим делитель или гаситель напряжения. В чем суть? В цепи необходимо создать нормальный для лампочки ток.

Если используется гаситель, то к источнику тока последовательно подключаются 2 или более резистора и лампочка. Общее сопротивление выбирается с таким расчетом, чтобы ток, протекающий по цепи, соответствовал номинальному току лампочки. Допустим, имеются: источник постоянного тока 9 В, лампочка напряжением 2,5 В и номинальным током 0,12 А.

Рассчитывается сопротивление лампочки, для этого напряжение делится на ток и получается примерно 20,8 Ом. Чтобы по цепи шел ток в 0,12 А, рассчитывается общее сопротивление: 9 В делённое на 0,12 А дает 75 Ом. Вычитается сопротивление лампочки и получится 54,2 Ом — такое сопротивление необходимо добавить к лампочке.

Если используется делитель, то тогда берутся два и более резистора и подключаются последовательно источнику питания.

Параллельно какой-то части делителя подключается нагрузка, получается схема со смешанным подключением: источник — часть делителя — параллельно подключенные часть делителя и нагрузка — источник тока.

Это только один вариант, на самом деле схем подключения множество, но всегда идет смешанное подключение.

Далее делается расчет нужного сопротивления. При параллельном подключении ток идет по двум цепям, значит, на нагрузке его будет меньше (подключенный последовательно резистор ограничивает ток). Для нормальной работы нагрузки высчитываются все токи, проходящие по делителю, а затем подбирается ограничивающий.

Области применения

Кроме своего обычного назначения — оказывать влияние на ток и напряжение, резисторы при использовании различных материалов приобретают совершенно другие свойства и название. Зачем они нужны, видно из следующего списка:

  • зависит от напряжения, — это варистор;
  • от температуры — терморезистор, термистор;
  • от освещенности — фоторезистор;
  • от деформации — тензорезистор;
  • от действия магнитного поля — магниторезистор;
  • разрабатывается новый, называется мемристор, сопротивление зависит от количества, проходящего через него заряда.

Варисторы чаще всего используют в качестве защиты от перенапряжения. В виде датчиков температуры используют терморезисторы. Если необходимо автоматизировать включение уличного освещения, то без фоторезистора это будет сделать сложно. Остальные указанные приборы используются в узкой специализации.

Обозначение на схеме

На электрической принципиальной схеме все резисторы обозначаются прямоугольником. Рядом ставится буква R и число, указывающее сопротивление. Если это постоянный, то внутри прямоугольника могут стоять римские цифры, соответствующие мощности этого элемента в ваттах. При мощности менее 1 Вт применяются следующие условные обозначения:

  • одна продольная линия внутри прямоугольника указывает на мощность в 0,5 Вт;
  • одна косая линия говорит о мощности в 0,25 Вт;
  • две косых — 0,125 Вт;
  • три косых — 0,05 Вт.
Читайте также:  Гибочный станок: конструкция и принцип действия, изготовление агрегата

Для того чтобы можно было отличать один прибор от другого, например, варистор от термистора также используются условные обозначения:

  • постоянный резистор обозначается только прямоугольником;
  • регулировочный — стрелка перечеркивает прямоугольник, центральный вывод подключается к одному из выводов резистора;
  • переменный — к прямоугольнику сверху под прямым углом подходит стрелка, к ней подключаются другие приборы;
  • подстроечный — на прямоугольник сверху ложится буква «т», к этому выводу подключаются другие приборы;
  • подстроечный, как реостат, центральный вывод соединен с одним из выводов прибора — прямоугольник перечеркивает косая буква «т»;
  • термистор (терморезистор) — на прямоугольник под наклоном ложится хоккейная клюшка;
  • варистор — обозначается как термистор, но над рабочей поверхностью клюшки ставится буква U;
  • фоторезистор — сверху к прямоугольнику подходят две наклонные стрелки.

Виды маркировок

На больших постоянных резисторах в сокращенной форме пишутся мощность, сопротивление и допуск (на сколько процентов может отклоняться указанная величина). Детали малого размера имеют цветовую, буквенную или цифровую маркировку, причем буквы и цифры могут дополнять друг друга. Каждый производитель сам выбирает способ маркировки.

Источник: https://220v.guru/elementy-elektriki/rezistory/iz-chego-sostoit-rezistor-i-princip-ego-raboty-v-elektricheskoy-cepi.html

Что такое резистор и как он работает

Человек, который сталкивается с электрическими схемами и приборами, работающими от электричества, порой имеет дело с огромным количеством элементов и предметов, которыми фактически нашпигованы платы монтажного типа.

На данный момент в электронике широко используется такая деталь, как резистор. Этот элемент единовременно может выполнять большое количество функций. Некоторые схемы не предполагают монтаж без его использования.

Иными словами, резистор практически нечем заменить.

На снимке различные виды резисторов

Что это такое и для чего он нужен?

Если обратиться к формообразованию слова, то непременно ниточка приведет к английскому слову «resist». В переводе на русский он будет обозначать действие – противостоять, сопротивляться и препятствовать.

Все сводится к тому, что в цепи в цепи протекает ток, испытывающий противодействие внутреннего типа. Определить величину этого самого сопротивления можно свойствами различных внешних факторов и свойств проводника.

Данный тип токовой характеристики можно измерить в Омах. При этом будет проглядываться непосредственная зависимость от напряжения и силы электрического тока.

  К примеру, при сопротивлении проводного элемента в 1 Ом и токе в 1 Ампер, на каждом из концов проводника будет создаваться напряжение в 1 Вольт.

Из этого следует, что при введении и изменении величины сопротивления можно будет контролировать и регулировать все остальные параметры. Причем стоит отметить, что их можно будет рассчитать самостоятельно.

На данный момент резисторы применяют во многих областях науки. Ко всему прочему их принято считать самой распространенной деталью для создания плат и электрических схем.

Главная функция резистора – это контроль и ограничение действия тока. Ко всему прочему, эту деталь порой применяют для того чтобы поделить напряжение в сети.

Если говорить о принципе работы, то все сводится к математическому представлению. В этом случае любая деталь в цепи, через которую проходит сила тока будет зависеть от сформировавшегося в ней напряжения. Эта зависимости может быть описана с помощью закона Ома, а деталь рассматривают в качестве резистора.

В стандартной ситуации на резисторе будет рассеиваться тепло. Специалисты утверждают, что в электрических схемах необходимо будет использовать этот элемент для того чтобы рассеять нужную мощность.

Помимо прочего необходимо будет предусмотреть, чтобы повышение температуры резистора не мешало работе деталей, расположенных от него по соседству.

Основываясь на математической теории можно выполнить расчет напряжения, его сопротивление и показатель электрического тока.

На всех электрических схемах резистор обозначают так, как показано на рисунке

Следует также отметить, что мощность резисторов, носящую номинальный характер обычно указывают в таблице комплектующих. Но в большинстве своем используют стандартную мощность в 0, 25 или 0,125 Ватт. Если для создания схемы необходимо использовать резистор большей мощности, то его указывают в предварительном списке.

Интересный факт. В большинстве своем все резисторы имеют в своем составе серебро. А вот определенные варианты собирают при использовании золота, платины, палладия, тантала и рутения.

Как определить мощность?

Для определения мощностного показателя предварительно необходимо научиться расшифровывать резистор.  Специально для облегчения работы была придумана специальная маркировка. Все они имеют различное цветовое обозначение.

Так, на маркировке указывают четыре основных цвета:

  • первая полоса – значение первой цифры;
  • вторая полоса – значение второй цифры;
  • треть полоса – нулевое число;
  • четвертая полоса – это точное значение резисторного сопротивления. Его еще называют допуском.

Ряды резисторов указаны в таблице

Номинальное обозначение резистора по полоскам можно определить по табличным данным и справочным материалам.

Расчет

Чтобы выполнить расчет делителя напряжения на резисторе следует использовать математическую формулу №1.

Формула №1

Фактически формула основана на законе Ома, где:

Uin и Uout – напряжение на входе и выходе;

R1 R2 –это сопротивление, проходящее через резистор.

Для расчета падения напряжения на резисторе используют следующую математическую формулу:

U1= I * R

Где U1– это падение напряжения на резисторе;

I – сила электрического тока, которая проходит через него;

R – cопротивление детали.

В таблице указано сопротивление резисторов

Сопротивления резисторов обозначается как R. При этом необходимо отметить, что сопротивление участка цепи с включенными в него тремя резисторами будет складываться из совокупности сопротивлений этих деталей.

Как проверить резистор?

Для того чтобы проверить деталь на работоспособность, необходимо ее попросту прозвонить. Для выполнения этой диагностической процедуры следует использовать мультиметр. Выбирают положение омметр. Данные полученные в конечном итоге можно будет сравнить с номинальным показателем сопротивления, которое предварительно указывают на корпусе элемента, а также на принципиальной схеме.

Соединение

На данный момент резисторы могут врезаться в сеть несколькими способами:

  • последовательное соединение резисторов – это врезание элемента последовательно от других деталей, включенных в сеть.
  • смешанное соединение резисторов – в данном случае при использовании нескольких деталей подключение к сети может производится любым способом. Причем совершенно не обязательно, что он будет единым. Это может быть и параллельное и последовательное подключение.

Параллельное соединение

При параллельном соединении резисторов их сопротивление будет величиной обратной номинальному.

Формула №2

Что же касается мощностного показателя, то его считывают на корпусе устройства.

Формула расчета параллельного соединения резисторов

Видео

Смотрите на видео что такое резистор и как он работает:

В том случае, если выполнить тот или иной расчет собственными силами невозможно, следует обратиться за помощью к справочным материалам и иным научным источникам.

Окт 9, 2015Татьяна Сумо

Источник: http://howelektrik.ru/elektrooborudovanie/rezistory/chto-takoe-rezistor-i-kak-on-rabotaet.html

Простая инструкция по применению резистора: для чего он нужен?

Резистор есть в каждом доме, да не один. Да, да, и в вашем тоже их предостаточно. Секрет в том, что любая электрическая схема содержит резистор.

Крошечный элемент играет огромную роль в работоспособности электроприбора. В чем же секрет детали?

Резистор — что это такое?

Электрический поток – вещь небезопасная и неудержимая. Но человечество научилось обманывать физические явления себе на благо.

Резистор используют подобно ловушке: он собственным сопротивлением удерживает электрический ток, делит и уменьшает напряжение.

Эти параметры прочно взаимосвязаны, потому благодаря регулированию силы сопротивления, можно получать необходимые параметры тока. Чем мы успешно пользуемся сегодня.

Для измерения силы сопротивления тока в резисторе используют физическую единицу – Ом.

На какие особенности обращать внимание при выборе?

Различают множество видов таких приборов. Подбор резистора для конкретной цели зависит от сложности электрической цепи, прибора, параметра электрического тока и отрезком значений для его регулирования – снижения показателей. Существует 2 типа таких устройств – переменные и постоянные. Вместе с этим их разнообразие уже насчитывает более 10–15 видов моделей.

Главное типовое различие – постоянный или переменный поток напряжения.

Например, в схеме регулирования громкости звука всегда установлен переменный резистор. Он подстраивается под сокращение или нарастание напряжения и меняет силу сопротивления. От этого мы слышим громкий или тихий звук.

В остальном резисторы отличаются по принципу работы, соединения, мощности, материалу-проводнику и качеству. Последнее — наиболее важный критерий. Профессионалы рекомендуют приобретать модели известных производителей, проверенные многолетней продажей на рынке. Также для выбора резистора необходимо учитывать:

  • значение необходимого сопротивления;
  • минимальную мощность рассеивания резистора.

Выбор резистора по мощности рекомендуется проводить с её запасом в 1–2 раза больше от расчетной.

Правильно подобранный резистор – это отсутствие перегрева у самого устройства и близлежащих элементов схемы.

Он обеспечивает рассеивание и дробление энергии, постоянство удерживаемого потока. Появление помех в работе техники: шум, перегрев, скачки напряжения — означает, что резисторы не справляются с работой. Поспешите совершить диагностику и замену резисторов.

Области применения резисторов

Резисторы с каждым годом расширяют сферу влияния и использования. От низковольтных карманных приборов до высоковольтных промышленных агрегатов.

Встретить микроприбор можно в бытовых приборах, медицинском, техническом оборудовании, измерительных устройствах, системах автоматики, цепях питания, высокочастотных линиях, волноводах, робототехнике, автотранспортных технологиях, теле-, радио-, видеоаппаратуре и прочее.

Существуют схемы, где используют резисторы в единичном порядке или устанавливают цельные конструкции из множества таких микроприборов.

В заключение можно сказать, что резисторы еще долгое время будут занимать главенствующую нишу в построении электросхем.

Ведь высокий КПД, доступность, простота в эксплуатации, малогабаритность позволяют внедрить микроустройство в любую деталь.

Подробный рассказ на видео: почему так широко используют резисторы

Источник: http://elektrik24.net/elektrooborudovanie/rezistory/dlya-chego-nuzhen.html

Как подобрать резистор по назначению и принципу работы

Резисторы – радиоэлементы, без которых нельзя построить ни одну электрическую схему. На их долю приходится примерно половина всех монтируемых в схеме деталей. Резисторы позволяют контролировать, ограничивать и распределять ток между другими элементами. Их основной характеристикой является сопротивление, измеряемое в Ом.

Обозначение резисторов

Графический знак резистора, принятый среди наших соотечественников, – прямоугольник. За рубежом его изображают в виде ломаной линии, напоминающей букву W.

На схемах рядом с графическим изображением указывают буквенно-цифровую маркировку, которая включает букву R, число, которое обозначает номер элемента на схеме, значение сопротивления. Если к номеру позиции элемента добавлен значок «*», то это означает, что величина сопротивления указана приблизительно.

Точное значение придется подбирать при настройке устройства. Поэтому постоянные резисторы для данной области применения не пригодны. Внутри графического символа может указываться номинальная мощность рассеивания.

Виды резисторов

Производители предлагают широчайший ассортимент резисторов, из которого нужно подобрать деталь, подходящую по конструкции, назначению и цене. Рассмотрим характеристики самых распространенных видов этих радиоэлементов. По материалу резистивного элемента различают изделия проволочные, непроволочные, металлофольговые.

Проволочные

Это традиционная разновидность, применяемая нашими папами и дедушками. Токопроводящую проволоку с большим удельным сопротивлением изготавливают на основе сплавов из меди, никеля, марганца – манганина, константана, никелина. В ходе работы могут нагреваться.

Непроволочные

В конструкцию входят: диэлектрическое основание и покрытие, обладающее определенным сопротивлением. Такое покрытие называют резистивом, оно может быть пленочным или объемным. Пленочные бывают:

  • Тонкопленочными. Их толщина измеряется в нанометрах. Резистив наносят вакуумным напылением на диэлектрическую подложку. Стоимость такой продукции выше стоимости толстопленочных аналогов. Ее преимущества: хороший температурный коэффициент сопротивления, невысокие – паразитная индуктивность и уровень шума. Востребованы в основном для устройств СВЧ, в которых требуется точность и стабильность.
  • Толстопленочными. Эти изделия имеют толщину в десятых долях миллиметра. Бывают – лакосажевые, керметные, на базе токопроводящих пластмасс. Это недорогие резисторы, их отклонение от номинального значения составляет 1-2%.

Сопротивление пленочных резисторов регулируют за счет толщины покрытия. Основные характеристики этих изделий: стабильность, точность, широкий диапазон значений сопротивления – от нескольких Ом до МОм.

Классификация резисторов по принципу работы

В зависимости от области применения, используют резисторы:

  • Постоянные. Эти элементы лишены способности менять сопротивление во время эксплуатации.
  • Подстроечные. Такие элементы имеют три вывода. Сопротивление между двумя выводами постоянное. Если третий связывают с подвижным контактом, то получают делитель напряжения. Используются для настройки чувствительности датчиков и другой аппаратуры.
  • Переменные, называемые «потенциометрами». С их помощью регулируют работу аппаратуры путем изменения сопротивления.

Разновидности полупроводниковых резисторов

В категорию полупроводниковых резисторов входят:

  • Терморезисторы. Сопротивление таких элементов изменяется, в зависимости от температуры окружающей среды.
  • Варисторы. Изменение сопротивления происходит в соответствии с изменением величины напряжения. Используйте эти детали, если хотите защитить основные элементы схемы от скачков напряжения в сети.
  • Фоторезисторы – очень популярная продукция, используемая в электронных схемах часов, управления уличным освещением. Реагирует на степень освещенности. При ее низком уровне сопротивление этого элемента достигает 1 мОм, при ярком освещении оно резко падает.

Параметры, учитываемые при покупке резисторов

При покупке этих деталей учитывают:

  • Самый важный параметр – сопротивление, которое определяется нормативной документацией. Его номинальное значение указывается на корпусе детали. Значения до 999 Ом выражаются в Ом, 1000-99000 Ом – в кОм, от 1 000 000 Ом – в МОм. Помимо сопротивления, необходимо правильно подобрать допуск на точность, который может находиться в пределах 0,5-10%. При выборе величины допуска следует помнить: чем выше точность, тем меньше эксплуатационный температурный интервал.
  • Номинальная мощность – это максимально допустимая мощность, рассеиваемая на резисторном элементе, при которой рабочие характеристики резистора сохраняются в течение всего установленного эксплуатационного периода. Например, если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может составить 90-110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью замера омметром или мультиметром.
  • Температурный коэффициент сопротивления. Эта величина характеризует относительное изменение сопротивления детали при повышении или понижении температуры на 1°C. ТКС для одного резистора в разных температурных интервалах может иметь разное значение.
  • Электрическая прочность. Указывает на предельное напряжение, при котором элемент может функционировать без выхода из строя на протяжении всего установленного срока службы.
Читайте также:  Как сделать меч из дерева своими руками

Источник: https://www.RadioElementy.ru/articles/kak-podobrat-rezistor/

Рефераты, дипломные, курсовые работы – бесплатно: Библиофонд!

Резисторы: назначение, классификация и параметры

Резисторы предназначены для перераспределения и регулирования электрической энергии между элементами схемы. Принцип действия резисторов основан на способности радиоматериалов оказывать сопротивление протекающему через них электрическому току. Особенностью резисторов является то, что электрическая энергия в них превращается в тепло, которое рассеивается в окружающую среду.

Классификация и конструкции резисторов

По назначению дискретные резисторы делят на резисторы общего назначения, прецизионные, высокочастотные, высоковольтные, высокоомные и специальные. По постоянству значения сопротивления резисторы подразделяют на постоянные, переменные и специальные.

Постоянные резисторы имеют фиксированную величину сопротивления, у переменных резисторов предусмотрена возможность изменения сопротивления в процессе эксплуатации, сопротивление специальных резисторов изменяется под действием внешних факторов: протекающего тока или приложенного напряжения (варисторы), температуры (терморезисторы), освещения (фоторезисторы) и т. д.

По виду токопроводящего элемента различают проволочные и непроволочные резисторы. По эксплуатационным характеристикам дискретные резисторы делят на термостойкие, влагостойкие, вибро- и ударопрочные, высоконадежные и т. д.

Основным элементом конструкции постоянного резистора является резистивный элемент, который может быть либо пленочным, либо объемным. Величина объемного сопротивления материала определяется количеством свободных носителей заряда в материале, температурой, напряженностью поля и т. д. и выражается известным соотношением

(2.1)

где ρ — удельное электрическое сопротивление материала;

l — длина резистивного слоя;

S — площадь поперечного сечения резистивного слоя.

В чистых металлах всегда имеется большое количество свободных электронов, поэтому они имеют малое ρ и для изготовления резисторов не применяются. Для изготовления проволочных резисторов применяют сплавы никеля, хрома и т. д., имеющие большое ρ.

Для расчета сопротивления тонких пленок пользуются понятием удельного поверхностного сопротивления ρs под которым понимают сопротивление тонкой пленки, имеющей в плане форму квадрата. Величина ρs связана с величиной ρ и легко может быть получена из (2.1), если принять в нейS = δw где w — ширина резистивной пленки. δ — толщина резистивной пленки.

Тогда

 (2.2)

Где  – удельное поверхностное сопротивление, зависящее от толщины пленки δ. Еслиl=w, то R=ρS, причем значение сопротивления не зависит от размеров сторон квадрата.

На рис. 2.1 представлено устройство пленочного резистора. На диэлектрическое цилиндрическое основание 1 нанесена резистивная пленка 2. На торцы цилиндра надеты контактные колпачки 3 из проводящего материала с припаянными к ним выводами 4. Для защиты резистивной пленки от воздействия внешних факторов резистор покрывают защитной пленкой 5.

Сопротивление такого резистора определяется соотношением

(2.3)

где l — длина резистора (расстояние между контактными колпачками); D — диаметр цилиндрического стержня.

Такая конструкция резистора обеспечивает получение сравнительно небольших сопротивлений (сотни Ом). Для увеличения сопротивления резистивную пленку 2 наносят на поверхность керамического цилиндра 1 в виде спирали (рис. 2.2).

Сопротивление такого резистора определяется соотношением

 (2.4)

где t – шаг спирали;

α – ширина канавки (расстояние между соседними витками спирали);

 – число витков спирали.

На рис. 2.3 показана конструкция объемного резистора, представляющего собой стержень 1 из токопроводящей композиции круглого или прямоугольного сечения с запрессованными проволочными выводами 2. Снаружи стержень защищен стеклоэмалевой или стеклокерамической оболочкой 3. Сопротивление такого резистора определяется соотношением (2.1).

Постоянный проволочный резистор представляет собой изоляционный каркас, на который намотана проволока с высоким удельным электрическим сопротивлением. Снаружи резистор покрывают термостойкой эмалью, опрессовывают пластмассой или герметизируют металлическим корпусом, закрываемым с торцов керамическими шайбами.

Выбор типа для конкретной схемы производится с учетом условий работы и определяется параметрами резисторов.

Резистор нельзя рассматривать как элемент, обладающий только активным сопротивлением, определяемым его резистивным элементом.

Помимо сопротивления резистивного элемента он имеет емкость, индуктивность и дополнительные паразитные сопротивления. Эквивалентная схема постоянного резистора представлена на рис. 2.7.

На схеме RR— сопротивление резистивного элемента, Rиз — сопротивление изоляции, определяемое свойством защитного покрытия и основания, Rк — сопротивление контактов, LR — эквивалентная индуктивность резистивного слоя и выводов резистора, СR — эквивалентная емкость резистора, Ск1 и Ск2 — емкости выводов. Активное сопротивление резистора определяется соотношением

 (2.5)

Сопротивление Rк имеет существенное значение только для низкоомных резисторов. Сопротивление Rиз практически влияет на общее сопротивление только высокоомных резисторов. Реактивные элементы определяют частотные свойства резистора. Из-за их наличия сопротивление резистора на высоких частотах становится комплексным. Относительная частотная погрешность определяется соотношением

 (2.6)<\p>

где Z — комплексное сопротивление резистора на частоте ω.

На практике, как правило, величины L и С неизвестны. Поэтому для некоторых типов резисторов указывают значение обобщенной постоянной времени τmах, которая связана с относительной частотной погрешностью сопротивления приближенным уравнением:

 (2.7)

Частотные свойства непроволочных резисторов значительно лучше, чем проволочных.

Параметры резисторов

Параметры резисторов характеризуют эксплуатационные возможности применения конкретного типа резистора в конкретной электрической схеме.

Номинальное сопротивление Rном и его допустимое отклонение от номинала ±∆Rявляются основными параметрами резисторов. Номиналы сопротивлений стандартизованы в соответствии с ГОСТ 28884 – 90.

Для резисторов общего назначения ГОСТ предусматривает шесть рядов номинальных сопротивлений: Е6, Е12, Е24, Е48, Е96 и Е192.

Цифра указывает количество номинальных значений в данном ряду, которые согласованы с допустимыми отклонениями (табл. 2.1).

Номинальные значения сопротивлений определяются числовыми коэффициентами, входящими в табл. 2.1, которые умножаются на 10n, где п — целое положительное число. Так, например, числовому коэффициенту 1,0 соответствуют резисторы с номинальным сопротивлением, равным 10, 100, 1000 Ом и т. д.

Номинальная мощность рассеивания Рном определяет допустимую электрическую нагрузку, которую способен выдержать резистор в течение длительного времени при заданной стабильности сопротивления.

Как уже отмечалось, протекание тока через резистор связано с выделением тепла, которое должно рассеиваться в окружающую среду. Мощность, выделяемая в резисторе в виде тепла, определяется величиной приложенного к нему напряжения U и протекающего тока I и равна

 (2.8)

Мощность, рассеиваемая резистором в окружающую среду, пропорциональна разности температур резистора ТR и окружающей среды Т0:

 (2.9)

Эта мощность зависит от условий охлаждения резистора, определяемых значением теплового сопротивления RT, которое тем меньше, чем больше поверхность резистора и теплопроводность материала резистора.

Из условия баланса мощностей можно определить температуру резистора, что наглядно показано на рис. 2.8, а.

Если

 (2.10)

Следовательно, при увеличении мощности, выделяемой в резисторе, возрастает его температура ТR, что может привести к выходу резистора из строя. Для того чтобы этого не произошло, необходимо уменьшить RT, что достигается увеличением размеров резистора.

Для каждого типа резистора существует определенная максимальная температура Tmax, превышать которую нельзя. Температура ТR, как следует из вышеизложенного, зависит также от температуры окружающей среды. Если она очень высока, то температура ТR может превысить максимальную.

Чтобы этого не произошло, необходимо уменьшать мощность, выделяемую в резисторе (рис. 2.8, б). Для всех типов резисторов в ТУ оговаривают указанные зависимости мощности от температуры окружающей среды (рис. 2.8, в).

Номинальные мощности стандартизованы (ГОСТ 24013-80 и ГОСТ 10318-80 ) и соответствуют ряду: 0,01; 0,025; 0,05; 0,125; 0,25; 0,5; 1; 1,2; 5; 8; 10; 16; 25; 50; 75; 100; 160; 250; 500.

Предельное рабочее напряжение Uпред определяет величину допустимого напряжения, которое может быть приложено к резистору. Для резисторов с небольшой величиной сопротивления (сотни Ом) эта величина определяется мощностью резистора и рассчитывается по формуле

 (2.11)

Для остальных резисторов предельное рабочее напряжение определяется конструкцией резистора и ограничивается возможностью электрического пробоя, который, как правило, происходит по поверхности между выводами резистора или между витками спиральной нарезки. Напряжение пробоя зависит от длины резистора и давления воздуха. При длине резистора не превышающей 5 см оно определяется по формуле

 (2.12)

где Р — давление, мм рт. ст.;

l — длина резистора, см.

ЗначениеUпред указывается в ТУ, оно всегда меньше Uпроб. При испытании резисторов на них подают испытательное напряжение Uисп которое больше Uпред и меньше Uпроб.

Температурный коэффициент сопротивления (ТКС) характеризует относительное изменение сопротивления при изменении температуры:

 (2.13)

Этот коэффициент может быть как положительным, так и отрицательным. Если резистивная пленка толстая, то она ведет себя как объемное тело, сопротивление которого с ростом температуры возрастает.

Если же резистивная пленка тонкая, то она состоит из отдельных «островков», сопротивление такой пленки с ростом температуры уменьшается, так как улучшается контакт между от дельными «островками».

У различных резисторов эта величина лежит в пределах ±(7‑12)·10-4.

Коэффициент старения βR характеризует изменение сопротивления, которое вызывается структурными изменениями резистивного элемента за счет процессов окисления, кристаллизации и т. д:

 (2.14)

В ТУ обычно указывают относительное изменение сопротивления в процентах за определенное время (1000 или 10 000 ч).

(2.16)

где К= 1,38-10-23Дж/ К— постоянная Больцмана;

Т — абсолютная температура, К;

R — сопротивление, Ом;

f— полоса частот, в которой измеряются шумы.

При комнатной температуре (T= 300 К)

(2.17)

Если резистор включен на входе высокочувствительного усилителя, то на его выходе будут слышны характерные шумы. Снизить уровень этих шумов можно, лишь уменьшив сопротивление К или температуру Т.

Помимо тепловых шумов существует токовый шум, возникающий при прохождении через резистор тока. Этот шум обусловлен дискретной структурой резистивного элемента.

При прохождении тока возникают местные перегревы, в результате которых изменяется сопротивление контактов между отдельными частицами токопроводящего слоя и, следовательно, флюктуирует (изменяется) значение сопротивления, что ведет к появлению между выводами резистора ЭДС токовых шумов Ei. Токовый шум, так же как и тепловой, имеет непрерывный спектр, но интенсивность его увеличивается в области низких частот.

Поскольку значения тока, протекающего через резистор, зависит от значения приложенного напряжения U, то в первом приближении можно считать

 (2.18)

где Ki — коэффициент, зависящий от конструкции резистора, свойств резистивного слоя и полосы частот. Величина Ki указывается в ТУ и лежит в пределах от 0,2 до 20 мкВ/В. Чем однороднее структура, тем меньше токовый шум.

У металлопленочных и углеродистых резисторов величина Ki ≤ 1,5 мкВ/В, у композиционных поверхностных резисторов Кi ≤ 40 мкВ/В, у композиционных объемных резисторов Кi ≤ 45 мкВ/В. У проволочных резисторов токовый шум отсутствует. Токовый шум измеряется в полосе частот от 60 до 6000 Гц.

Его величина значительно превышает величину теплового шума.

Получить у преподавателя исследуемый элемент и произвести расчет его конструктивных параметров по вариантам и данным в табл 1.

Определить следующие параметры резистора:

·   требуемое удельное сопротивление материалов для резистивного слоя ρ,

·   удельное поверхностное сопротивление ρs,

·   предельное(пробивное) рабочее напряжение Uпред(проб),

·   ТКС,

·   βR

·   ЭДС шума Ет

·   ЭДС токового шума Ei

Таблица 1.

Вариант Тип резисторатипоразмер δ толщина пленки t шаг спирали ширина канавки α=1/2t Изменение сопротивления при увеличении температуры на +10 С Изменение сопротивления при наработке 10000 часов Полоса частот ∆ F,кГц Ki мкВВ На Uпроб
1 Пленочный рис 2.1 0,12 мм -12 Ом 31,4 Ом 30 3,8
2 Пленочный рис 2.2 0,14 мм 1,2мм – 5 Ом 56,3 Ом 29 0,8
3 Пленочный рис 2.2 0,16 мм 1,6мм -1,2 Ом 56,4 Ом 10 17,3
4 Пленочный рис 2.2 0,18 мм 2,2 мм – 19 Ом -10 Ом 11 0,7
5 Обьемный рис 2.3 -4,2 Ом -12 Ом 27 3,8 Обьемный рис 2.3 -8,6 Ом 37,4 Ом 3 19,4
7 Пленочный рис 2.1 0,19 мм -29 Ом 50 Ом 14 5,5

Источник: https://www.BiblioFond.ru/view.aspx?id=479308

Что такое резистор

Резистор или иначе сопротивление мы электронщики называем его по братски ‘Резюк” — пассивный элемент, применяющийся в электрических цепях, обладающий постоянным или переменным значением электрического сопротивления, предназначенный для линейного преобразования  напряжения в силу тока, силы тока в напряжение, также используется для ограничения тока, и др.                                       Во как! Звучит заумно, но давай разберемся, и ты поймешь, что – резистор это Не сложно!                                                                                                                                       Резистор как компонент очень широко используется практически во всех электрических и электронных устройствах с этого компонента ты начнешь постигать основы электроники.                                                                                                            Конструкция резистора представляет собой не проводящую электричество трубочку (или стер­жень), на которую нанесен тонкий слой ме­талла  или сажи (углерода) чем тоньше слой тем больше сопротивление.                                                                                    Резистор используется для того, чтобы установить нужный ток в элек­трической цепи. Здесь нужно понять одну зависимость – чем больше сопротивление резистора, тем меньше ток и наоборот – чем меньше сопротивление, тем больше ток.                                                                                                          Представь себе резиновый шланг по которому течет вода, если ты наступишь на него, то количество вытекающей из него воды станет меньше потому что уменьшится проток. То же самое происходит и с электрическим током при его прохождении через резистор.

Читайте также:  Виды и описание гидроабразивной резки металла

Основные характеристики и параметры резисторов

Резистор не самый сложный компонент, но имеет свои характеристики и параметры.                                                                                                              

Рассмотрим основные:                                                                                                                       Номинальное сопротивление – это основной параметр.

                                                       Предельная рассеиваемая мощность – тоже важный параметр.                                          Резисторы различают по сопротивлению и мощности.

Сопротивление, измеряют в омах – (на электрических схемах обозначается Ом), килоомах (на электрических схемах обозначается кОм) и мегоомах – (на электрических схемах обозначается мОм) а мощность – в ваттах Wt (мощность резистора на схемах указывается полосками на обозначении резистора).

                                                                                                 Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.  

Обозначение резисторов

 Обозначение

 Номинальная мощность

Постоянный резистор без указания номинальной мощности рассеивания

(если не обозначена номинальная мощность, можно использовать резистор любой мощности)

Постоянный резистор номинальной мощностью рассеивания 0,05 Вт

Постоянный резистор номинальной мощностью рассеивания 0,125 Вт

Постоянный резистор номинальной мощностью рассеивания 0,25 Вт

Постоянный резистор номинальной мощностью рассеивания 0,5 Вт

Постоянный резистор номинальной мощностью рассеивания 1 Вт

Постоянный резистор номинальной мощностью рассеивания 2 Вт

Постоянный резистор номинальной мощностью рассеивания 5 Вт

В современных электрических схемах мощность резистора указывают только если требуется применение мощных резисторов. Если рядом с резистором его мощность не указана, можно смело ставить самый маленький размер.

Номинальное сопротивление резистора.

Номинальное сопротивление резисторов – это основной парамет.

Величина сопротивления резистора выражается в Омах, кОмах, мОмах. 1 мОм = 1000 кОм, 1 кОм = 1000 Ом.

                                                                                                                              На корпусе резистора наносится обозначение его номинального сопротивления, на резисторах Советского производства величина сопротивления обозначалась цифрами и ненужно было ломать голову какой резюк установлен на плате или лежит у тебя в коробке из под спичек (из спичечных коробков делают самодельные кассеты для хранения мелких радиодетелей).                                                                                 Современные резисторы, имеют обозначение номинала сопротивления в виде кольцевых полос различного цвета.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Для определения сопротивления такого резистора имеются специальные таблицы.

 Типы резисторов и их обозначение

  Переменный резистор (реостат).

      Переменный резистор, включенный как реостат

      (ползунок соединён с одним из крайних выводов).

     Подстроечный резистор.

     Подстроечный резистор, включенный как реостат

     (ползунок соединён с одним из крайних выводов).

    Варистор (сопротивление зависит от приложенного напряжения).

    Термистор (сопротивление зависит от Температуры).

    Фоторезистор (сопротивление зависит от освещенности).

Основные типы резисторов которые ты будешь использовать при ремонте или конструировании – постоянные, подстроечные и переменные. Одни из самых распространенных резисторов типа МЛТ (металлизированный, лакированный теплостойкий).

                                                                                                                      Подстроечные резисторы предназначены для на­стройки и устанавливаются на монтажной плате или внутри корпуса аппаратуры.

Переменные резисторы

В отличие от постоянных резисторов, которые имеют два вывода, у переменных и подстроечных резисторов выводов три.

На схеме указывают сопротивление между крайними выводами переменного резистора.

Сопротивление же между средним выводом и крайними изменяется при вращении оси резистора, причем, если вращать ось в одну сто­рону, сопротивление между средним выводом и одним из крайних возрастает, и соответственно уменьшается между сред­ним выводом и другим крайним.

Если же ось возвращают назад, происходит обратное. Это свойство переменного резис­тора используют, например, для регулирования громкости звука, тембра в усилителях, приемниках и пр.

Терморезистор.

 При нагревании и ли охлаждении значение сопротивления этих резисторов изменяется в большую или меньшую сторону, на этом свойстве терморезистора, основан принцип измерения температуры. Терморезисторы используют в приборах и оборудовании для измерения и регулировки температуры, защиты оборудования от перегрева.  

Фоторезистор    

Как и терморезистор изменяет значение сопротивления, изменение сопротивления происходит при попадании света на специальную пластину которая покрыта составом изменяющим свое свойство в зависимости от освещенности.                                                                                  Этот резистор применяется для управления осветительными приборами, устройствами контроля пламени печи и пр.

Проверка резисторов

Для проверки резисторов понадобится прибор омметр с его помощью ты измеряешь сопротивление резистора и сравниваешь с номи­нальным значением, которое указано на самом резисторе или на принципиальной схеме аппарата.

                При измерении сопро­тивления резистора полярность подключения к нему ом­метра не имеет значения. Т.е. какой провод прибора ты подключишь к той или иной ножке резистора при измерении сопротивления не имеет значения.

Отклонение 10% от номинала, для обычных  (не сверх точных и точных) резисторов, считается нормальным.

При проверке переменных резисторов, измеряется со­противление между крайними выводами, которое должно соответствовать номинальному значению с учетом допуска и погрешности измерения.

                                 Так же необходимо измерять сопротивление между каждым из крайних выводов и сред­ним выводом при этом необходимо вращать ось резистора из одного крайнего положения в другое, значение должно изменяться плавно, без скачков от нуля до номинального значения.

 Соединение резисторов в электрической цепи

Теперь, когда ты познакомился с ” резюками” давай еще немного помучаю тебя теорией о том, как резисторы подключают в электрическую схему  это очень важно без этого не обойтись, дальше ты узнаешь почему.

Последовательное соединение резисторов

Последовательное соединение  — это такое соединение, при котором каждый последующий резистор подключается к предыдущему, образуя неразрывную цепь без разветвлений. Ток в такой цепи будет одинаковым в каждой её точке, а вот напряжение U1, U2, U3 в различных её точках будет разным.

Отсюда следует, что   общее значение  такого соединения определяется суммированием всех сопротивлений включенных последовательно.  Общее сопротивление, рассчитывается по довольно простой формуле (Rобщ.

=R1+R2+….Rn).

 Необходимо знать, что при последовательном соединении резисторов общее сопротивление  (Rобщ). увеличивается.

Параллельное соединение

Соединив концы резисторов в точке А и точке В, мы получим участок цепи, который называется параллельным соединением и состоит из некоторого количества параллельных друг другу ветвей (в нашем случае – резисторов). При этом электрический ток между точками А и B распределится по каждой из этих ветвей.      Напряжения на всех резисторах будут одинаковы: U=U1=U2                                    

Чем большее количество резисторов (или других звеньев электрической цепи, обладающих некоторым сопротивлением) соединить по параллельной схеме, тем больше путей для протекания тока образуется, и тем меньше общее сопротивление цепи. Общее сопротивление при параллельном соединении резисторов ты можешь рассчитать по этой формуле: 

Необходимо знать, что при параллельном соединении резисторов, общее сопротивление (Rобщ), уменьшается.

Смешанное соединение      

Смешанное соединение – (как ты уже понял из приведенной схемы) представляет из себя цепь, в которую резисторы включены как последовательно, так и параллельно, все выше сказанное о параллельном и последовательном соединении, так же справедливо и для смешанного соединения резисторов. Смешанное соединение ты можешь рассчитать так.

Для чего применяются последовательное, параллельное, и смешанное соединение резисторов?                                                                                                                                     При практическом использовании резисторов, например сборке, регулировки параметров аппаратуры, ремонте различных электронных устройств, под рукой может не оказаться резистора необходимого номинала, тогда тебя может выручить знание о способе соединения резисторов, так если необходим резистор номиналом 100Ком его можно сделать, соединив последовательно два резистора по 50Ком или  соединить параллельно два резистора по 200Ком, или использовать смешанное соединение два резистора номиналом 70Ком соединить параллельно и к ними подключить последовательно резистор 65Ком.                                                                           Конечно, я дал краткое описание, т.е. базовые знания о резисторах и способах их подключения.                                                                                                                                         Если, тебе понадобится более подробное описание и теоретические выкладки, ты всегда можешь воспользоваться специальной литературой и интернетом.

Источник: http://slojno.net/chto-takoe-rezistor/

Ссылка на основную публикацию