Система защиты обратного трубопровода

Система защиты обратного трубопровода

Трубопроводные магистрали сегодня являются наиболее распространенным средством для осуществления доставки носителей энергии. К сожалению, у них есть существенный недостаток – они подвержены образованию ржавчины. Чтобы избежать появления коррозии на магистральных трубопроводах, выполняют катодную защиту. В чем же заключается ее принцип действия?

В наши дни существует много способов защиты водопроводов от коррозии. Суть их проста: металл, из которого изготовлены трубы, вступает в реакцию с определенными растворами и веществами. Результатом процесса становится образование небольшой защитной пенки.

Специалистами выделяются следующие методы защиты трубопроводов от коррозии:

Электрохимическая защита

Достаточно результативный способ защиты металлоконструкций от электрохимической коррозии. Иногда воссоздать лакокрасочную оболочку или защитное оберточное покрытие просто невозможно. Вот в таких случаях и уместно применение электрохимической защиты. 

Восстановление покрытия трубопровода, расположенного под землей, или днища морского судна – процесс достаточно трудоемкий и дорогой, а в некоторых случаях и невозможный. Благодаря электрохимической защите изделие будет надежно защищено от коррозии: покрытия подземных трубопроводов, днищ судов, всевозможных резервуаров не будут разрушаться. Система защиты обратного трубопровода

  • Используется метод в ситуациях, когда потенциал свободной коррозии пребывает в области усиленного распада основного металла или перепассивации. То есть, когда металлоконструкция интенсивно разрушается.
  • При электрохимической защите к изделию из металла подключают постоянный электрический ток. Благодаря ему на поверхности металлической конструкции образуется катодная поляризация электродов микрогальванических пар и анодные области становятся катодными. А вследствие негативного влияния коррозии разрушается не металл, а анод.
  • Электрохимическая защита может быть анодной или катодной: это будет зависеть от того, в какую сторону сдвинется потенциал металла (в положительную или в отрицательную).

Катодная защита

Метод, достаточно часто используемый для защиты металлоконструкций от коррозии. Применяется в тех случаях, когда металл не имеет склонности к пассивации.

Суть метода проста: к изделию подается внешний электроток от отрицательного полюса, который обеспечивает поляризацию катодных участков коррозионных составляющих и поднимает значение потенциала до анодных.

После прикрепления положительного полюса источника тока к аноду коррозия защищаемого изделия становится почти нулевой.

Система защиты обратного трубопровода

Анод требует периодической замены, так как со временем происходит его разрушение. 

  • Способы катодной защиты: поляризация от внешнего источника электротока, торможение развития катодного процесса, связь с металлом, имеющим более электроотрицательный потенциал свободной коррозии в определенной среде (протекторная защита).
  • С помощью поляризации от внешнего источника электротока защищают конструкции, находящиеся в почве и в воде, цинк, олово, алюминий и его сплавы, титан, медь и ее сплавы, свинец, высокохромистые, углеродистые, низколегированные и высоколегированные стали.
  • Роль внешнего источника электротока выполняют станции катодной защиты. Их главные составляющие – выпрямитель, токоподвод к защищаемому объекту, анодные заземлители, электрод сравнения и анодный кабель.
  • Катодная защита может быть использована в качестве самостоятельного или дополнительного способа коррозионной защиты.

Основной показатель результативности метода – защитный потенциал. Защитным называют тот потенциал, при котором быстрота коррозионного процесса металлического изделия становится минимальной. 

Однако катодная защита обладает определенными недостатками. Один из них – опасность перезащиты. Такой эффект может наблюдаться в случае большого смещения потенциала защищаемого изделия в отрицательную сторону. Вследствие этого разрушаются защитные оболочки, начинается водородное охрупчивание металла, коррозионное растрескивание. 

Протекторная защита

Вид катодной защиты, в процессе которого к защищаемому объекту подсоединяют металл с более высоким электроотрицательным потенциалом. При этом разрушается не металлоконструкция, а протектор. Через определенный промежуток времени протектор корродирует и его потребуется заменить на новый. 

Система защиты обратного трубопровода

  • Эффект от протекторной защиты будет заметен только в том случае, если переходное сопротивление между протектором и окружающей средой незначительно. 
  • У каждого протектора есть свой радиус защитного действия – предельно возможное расстояние, на которое можно удалить протектор без утраты защитного эффекта. Протекторную защиту применяют, когда ток к объекту подвести трудно, дорого или просто невозможно.
  • С помощью протекторов защищают объекты, находящиеся в нейтральных средах (море, реке, воздухе, почве и т.д.).
  • Материалом для изготовления протекторов служит магний, цинк, железо, алюминий. Металлы в чистом виде не смогут стать эффективной защитой для конструкций, поэтому, изготавливая протекторы, их дополнительно легируют. 

Для изготовления железных протекторов используют углеродистые стали или чистое железо.

Анодная защита

Используется для титановых конструкций, объектов из низколегированных нержавеющих, углеродистых сталей, железистых высоколегированных сплавов, разнородных пассивирующихся металлов. Метод применяют в хорошо электропроводной коррозионной среде. 

Система защиты обратного трубопровода

При анодной защите происходит сдвиг потенциала защищаемого металла в более положительную сторону. Смещение будет длиться до тех пор, пока не достигнется инертное устойчивое состояние системы. К преимуществам анодной электрохимической защиты можно отнести не только существенное торможение скорости коррозии, но и то, что продукты коррозии не оказываются в производимом продукте и среде. 

  • Существует несколько способов реализации анодной защиты: можно сдвинуть потенциал в положительную сторону с помощью источника внешнего электротока или ввести в коррозионную среду окислители, которые способны повысить эффективность катодного процесса на металлической поверхности.    
  • Анодная защита с применением окислителей по защитному механизму имеет много общего с анодной поляризацией. 
  • При использовании пассивирующих ингибиторов с окисляющими характеристиками (бихроматов, нитратов и т.д.), защищаемая металлическая поверхность под воздействием возникшего тока становится пассивной. Однако эти вещества способны сильно загрязнять технологическую среду. 
  • Если ввести в сплав добавки, реакция восстановления деполяризаторов, которая происходит на катоде, пройдет не с таким большим перенапряжением, как на защищаемом металле. 
  • При прохождении электротока через защищаемую конструкцию потенциал сдвигается в положительную сторону. 
  • В состав установки для анодной электрохимической защиты входит источник внешнего электротока, электрод сравнения, катод и защищаемая конструкция. 

Для эффективности метода в той или иной среде используют легкопассивируемые металлы и сплавы. Кроме этого требуется высокое качество выполнения соединительных элементов и постоянное нахождение электрода сравнения и катода в растворе. 

  • Подход к проектированию схемы расположения катодов должен быть индивидуальным для каждого случая. 
  • Электрохимическую анодную защиту нержавеющих сталей используют для хранилищ серной кислоты, аммиачных растворов, минеральных удобрений, различных сборников, цистерн, мерников. 
  • Анодную защиту используют, чтобы предотвратить коррозию ванн химического никелирования и теплообменных установок в изготовлении искусственного волокна и серной кислоты. 

Электродренажная защита

Это способ защиты трубопроводов от разрушения с помощью блуждающих токов. Метод предусматривает их дренаж (отвод) с защищаемой конструкции на источник блуждающих токов или специальное заземление. 

Система защиты обратного трубопровода

  • Дренаж бывает прямым, поляризованным и усиленным. Прямой электрический дренаж – это дренажное устройство, имеющее двустороннюю проводимость. При величине тока, превышающей допустимую величину, выйдет из строя плавкий предохранитель. Электрический ток пойдет по обмотке реле, оно включится, после чего произойдет включение звука или света. 
  • Прямой электрический дренаж используют для тех трубопроводов, чей потенциал всегда выше потенциала рельсовой сети, служащей для отвода блуждающих токов. Иначе отвод станет каналом для натекания блуждающих токов на трубопровод. 
  • Поляризованный электрический дренаж является дренажным устройством, имеющим одностороннюю проходимость. Отличие поляризованного дренажа от прямого заключается в присутствии у первого элемента односторонней проводимости ВЭ. В случае поляризованного дренажа ток течет только в одном направлении – от трубопровода к рельсу. Это не позволяет блуждающим токам натекать на трубопровод по дренажному проводу. 
  • Усиленный дренаж используется тогда, когда требуется не только отвести блуждающие токи с трубопровода, но и создать на нем определенную величину защитного потенциала. Усиленный дренаж – это обычная катодная станция. Ее отрицательный полюс подсоединяют к защищаемой конструкции, а положительный – к рельсам электрифицированного транспорта, а не к анодному заземлению. 
  • Как только трубопровод введут в эксплуатацию, регулируют работу системы его защиты от коррозии. Если возникает необходимость, осуществляют подключение станций катодной и дренажной защиты и протекторных установок.

Использование какой-либо из технологий защиты промысловых, стальных и прочих видов трубопроводов от коррозии – обязательная составляющая их эксплуатации. Все методы антикоррозийной защиты требуется реализовывать в строгом соответствии с ГОСТом.

Защита трубопроводов от коррозии

Сегодня без разных видов трубопроводов невозможно представить себе жизнью Они находятся практически в каждом населенном пункте и обеспечивают коммуникации.

Читайте также:  Фитинги для полипропилен или металлопластик

Производств труб для прокладки под землей осуществляется из металлов самых разных типов. Со временем они подвергаются коррозии, что ведет к их разрушению.

Данный процесс является неизбежным, но его можно отсрочить с помощью некоторых защитных способов.

Защита подземных трубопроводов от коррозии

Система защиты обратного трубопровода

Трубопроводы разных видов нашли широкое применение в современном мире. Они практически всегда спрятаны пол землей. Процесс образования коррозии на них не относится к разряду тех, которые можно избежать.

Его можно только отсрочить на некоторый промежуток времени. Для этого используются специальные составы, которые на металлической поверхности образуют небольшую защитную пленку.

Она не дает агрессивной подземной среде влиять на структуру трубопровода.

Защита трубопроводов от коррозии направлена на то, чтобы остановить все окислительные процессы.

Внимание: Стоит отметить, что на трубах коррозия образуется как внутри, так и снаружи. Внутренняя их часть страдает от того, что коррозийный налет появляется в результате протекания по ним агрессивных веществ, вызывающих окислительные процессы. Внутренняя часть страдает от высокого уровня влажности почвы.

Защитная пленка должна находиться и внутри и снаружи по понятным причинам. Только в этом случае можно предотвратить быстрее появление коррозийного налета, который обладает разрушающими свойствами.

Защита трубопроводов необходима для разных видов коммуникаций. Сегодня защитные способы применяются не только для водопроводных труб, которые страдают от появления ржавчины, но и для газопровдов.

Защита водопроводных труб необходимо по причине того, что по ним вода поступает на предприятия и в дома людей. Она должна быть без всяких примесей.

Если трубы ржавые, то водопроводная жидкость будет иметь неприятный оранжевый оттенок. Такая вода не годится для употребления в пищу.

Ее даже не используют на промышленных объектах, потому что она может повлиять на свойства выпускаемой продукции.

Таблица. Скорость коррозии металла

БаллСкорость коррозииГруппа стойкости
1 10.1 нестойкие

Способы защиты трубопроводов от коррозии

Сегодня имеется большое количество методов защиты водопроводов от налета коррозии. Они основаны на том, чтобы металл, из которого сделаны трубы, вступил в реакцию с вводимыми веществами и растворами. В результате образуется небольшая пленка, которая обеспечивает защиту. В настоящее время выделяют следующие способы защиты трубопроводов от коррозии:

Электрохимическая защита трубопроводов от коррозии

Система защиты обратного трубопровода

Трубопроводы данным методом обрабатываются уже много лет. Для этой цели используются растворы электролитов. Благодаря данному методу на металлической поверхности труб появляется плотная защитная пленка высокой прочности. Она не дает агрессивной среде проникнуть в глубокие слои труб. Эффект защиты сохраняется на длительный период.

Катодная защита трубопроводов от коррозии

Данный процесс представляет собой использование электрического тока. Он подается в постоянном режиме, чтобы пленка для защиты металла не разрушалась.

Протекторная защита от коррозии трубопроводов

Данный способ защиты является одним из самых распространенных. Она является самой доступной и не затратной. Ведь для ее воплощения нет необходимости тратить электрический ток.

Этот методы заключается в нанесении на поверхность любых труб из металлов сплавов других элементов, которые образуют на их поверхности плотную защитную пленку. Благодаря ней все процессы окисления прекращаются. Для этой цели используются сплавы многих металлов: магний, цинк.

В некоторых ситуациях применяется алюминиевый сплав. Данный метод подходи для того, чтобы защищать трубы, которые располагаются под землей.

Анодная защита от коррозии трубопроводов

Данный защитный метод основан на методе анодирования. Он не часто используется по причине того, что он является не экономичным. Для него постоянно требуется подача электрического тока, что приводит к увеличению денежных и энергетических затрат.

Защита трубопровода от коррозии подлит срок их службы

У всех методов защиты трубопроводов имеется большое количество достоинств. Они заключаются в:

  • увеличении уровня прочности труб,
  • увеличении уровня устойчивости к влиянию агрессивной среды,
  • продлении срока службы трубопроводов самых разных типов,
  • увеличении твердости поверхности труб и внутри и снаружи.

Благодаря всем методам защиты удается обеспечить длительный эксплуатационный срок всех трубопроводов. Они дают им возможность прослужить не мене десятка лет.

Видео про защиту трубопроводов от коррозии

Электрохимическая защита технологических трубопроводов

Главная / Проектирование трубопроводных сетей / Оборудование трубопроводов / Электрохимическая защита технологических трубопроводов

При укладке в траншею изолированного трубопровода и его последующей засыпке изоляционное покрытие может быть повреждено, а в процессе эксплуатации трубопровода оно постепенно стареет (теряет свои диэлектрические свойства, водоустойчивость, адгезию). Поэтому при всех способах прокладки, кроме надземной, трубопроводы подлежат комплексной защите от коррозии защитными покрытиями и средствами электрохимической защиты (ЭХЗ) независимо от коррозионной активности грунта.

К средствам ЭХЗ относятся катодная, протекторная и электродренажная защиты.

Защита от почвенной коррозии осуществляется катодной поляризацией трубопроводов. Если катодная поляризация производится с помощью внешнего источника постоянного тока, то такая защита называется катодной, если же поляризация осуществляется присоединением защищаемого трубопровода к металлу, имеющему более отрицательный потенциал, то такая защита называется протекторной.

Катодная защита

Принципиальная схема катодной защиты показана на рисунке.

Источником постоянного тока является станция катодной защиты 3, где с помощью выпрямителей переменный ток от вдольтрассовой ЛЭП 1, поступающий через трансформаторный пункт 2, преобразуется в постоянный.

Отрицательным полюсом источник с помощью соединительного провода 4 подключен к защищаемому трубопроводу 6, а положительным — к анодному заземлению 5. При включении источника тока электрическая цепь замыкается через почвенный электролит.

Принципиальная схема катодной защиты

1 — ЛЭП; 2 — трансформаторный пункт; 3 — станция катодной защиты; 4 — соединительный провод; 5 — анодное заземление; 6 — трубопровод

Принцип действия катодной защиты следующий. Под воздействием приложенного электрического поля источника начинается движение полусвободных валентных электронов в направлении «анодное заземление — источник тока— защищаемое сооружение».

Теряя электроны, атомы металла анодного заземления переходят в виде ион-атомов в раствор электролита, т.е. анодное заземление разрушается. Ион-атомы подвергаются гидратации и отводятся в глубь раствора. У защищаемого же сооружения вследствие работы источника постоянного тока наблюдается избыток свободных электронов, т.е.

создаются условия для протекания реакций кислородной и водородной деполяризации, характерных для катода.

  • Подземные коммуникации нефтебаз защищают катодными установками с различными типами анодных заземлений. Необходимая сила защитного тока катодной установки определяется по формуле
  • Jдр=j3·F3·K0
  • где j3 — необходимая величина защитной плотности тока; F3 — суммарная поверхность контакта подземных сооружений с грунтом; К0 — коэффициент оголенности коммуникаций, величина которого определяется в зависимости от переходного сопротивления изоляционного покрытия Rnep и удельного электросопротивления грунта рг по графику, приведенному на рисунке ниже.
  • Необходимая величина защитной плотности тока выбирается в зависимости от характеристики грунтов площадки нефтебазы в соответствии с таблицей ниже.

Протекторная защита

Принцип действия протекторной защиты аналогичен работе гальванического элемента.

Два электрода: трубопровод 1 и протектор 2, изготовленный из более электроотрицательного металла, чем сталь, опущены в почвенный электролит и соединены проводом 3.

Так как материал протектора является более электроотрицательным, то под действием разности потенциалов происходит направленное движение электронов от протектора к трубопроводу по проводнику 3.

Одновременно ион-атомы материала протектора переходят в раствор, что приводит к его разрушению. Сила тока при этом контролируется с помощью контрольно-измерительной колонки 4.

Зависимость коэффициентов оголенности подземных трубопроводов от переходного сопротивления изоляционного покрытия для грунтов удельным сопротивлением, Ом-м

Система защиты обратного трубопровода

1 — 100; 2 — 50; 3 — 30; 4 — 10; 5 — 5

Зависимость защитной плотности тока от характеристики грунтов

Тип грунта рп Омм А, А/м2
Влажный глинистый грунт:
— pH >8 15 0,033
pH = 6-8 15 0,160
— с примесью песка 15 0,187
Влажный торф (pH

О вопросах внедрения защиты оборудования систем теплоснабжения от повышенного давления теплоносителя и гидравлических ударов

Журнал “Новости теплоснабжения”, № 3, (19), март, 2002, С.22 – 25, www.ntsn.ru

Мартынов С.М., государственный инспектор, ГУ «Брянскгосэнергонадзор»

Читайте также:  Стационарная циркулярная пила: виды и особенности

Из опыта эксплуатации крупных систем теплоснабжения (СТ), которые оснащены большим объемом запорной арматуры, насосного оборудования, а так же имеющих большую протяженность сетей и высокое гидравлическое сопротивление, известны трудности при обеспечении высокой степени их надежности.

В частности, это относится как к крупным квартальным или районным котельным, так и к присоединенным сетям и системам теплопотребления.

В таких СТ существует высокая вероятность возникновения аварийных либо переходных гидравлических процессов, характеризуемых колебаниями либо повышением давления сетевой воды, значения которых выходят за пределы допустимых значений прочностных характеристик оборудования и сетей.

Подобные процессы возможны и в СТ невысокой мощности и протяженности, и кроме того могут иметь характер гидравлического удара. Степень же надежности проектируемых и, в большей степени эксплуатируемых СТ, является одним из важнейших факторов при осуществлении договорных отношений между теплоснабжающими организациями (ТСО) и потребителями тепловой энергии.

  • Отсутствие в составе СТ специализированных устройств защиты от названных явлений в значительной степени усугубляет аварийную ситуацию, приводит к цепному характеру ее распространения и серьезным последствиям для системы теплоснабжения, таким как:
  • – повреждение тепломеханического оборудования источников теплоснабжения;
  • – разрыв сетевых трубопроводов с затоплением помещений источников теплоснабжения, выводом из строя электрооборудования и потерей собственных нужд;
  • – прекращение теплоснабжения объектов ЖКХ и социальной сферы, предприятий, влекущее с серьезные социальные последствия и нанесение материального ущерба;
  • – разрыв отопительных приборов внутренних систем теплопотребления с затоплением помещений.
  • Подобные инциденты могут сопровождаться травматизмом обслуживающего персонала ТСО и третьих лиц.
  • Нарушения нормального гидравлического режима СТ имеют следующие технические причины:
  • – аварийные отключения сетевых и подпиточных насосов ТСО;
  • – закрытие (открытие) регуляторов, запорной, предохранительной и обратной арматуры на источниках теплоснабжения, в тепловых сетях и в тепловых пунктах потребителей (причем разрывы коррозионно-ослабленных трубопроводов могут происходить даже в случае плановых переключений в тепловых схемах, при перепуске насосов, уменьшении или увеличении подпитки сети);
  • – вскипание воды в котлах и оборудовании ТСО;
  • – разрывы магистральных сетевых трубопроводов.

В зависимости от инерционности системы трубопроводов и характеристик возмущения переходные гидравлические режимы можно подразделить на условно-стабильные и на гидравлические удары. Обе разновидности могут носить характер затухающего колебательного процесса.

Последние отличаются высокими значениями мгновенных давлений, высокой скоростью нарастания и спада давления (т.е. динамическим воздействием на оборудование) и высокой скоростью распространения.

Вероятность гидравлического удара в СТ выше с увеличением длин и диаметров трубопроводов, а так же при оснащении СТ такими устройствами, отказ или срабатывание которых приводит к быстротечному знакопеременному изменению скорости теплоносителя (в т.ч.

локальному), нарушению неразрывности потока, локальному понижению давления с достижением температуры кипения, вскипанию и последующей конденсации теплоносителя.

Кроме того, величина скачкообразного приращения давления и скорость распространения ударной волны, вызванной гидроударом, находятся в пропорциональной зависимости от скорости и расхода теплоносителя в трубопроводе, а так же от степени упругости материала трубопровода.

Условно-стабильные режимы характеризуются монотонными нарушениями стационарного гидравлического режима, при которых скорость изменения (в т.ч. нарастания) давления невысока. Подобные режимы наиболее часто являются следствием операций с регулирующими клапанами, закрытия или открытия арматуры с электроприводом.

Кроме того, СТ обладают следующей особенностью: существует значительный разброс допустимых давлений для оборудования и трубопроводов, установленных в ТСО, тепловых сетях и системах теплопотребления.

Например, системы теплопотребления, укомплектованные чугунными радиаторами, имеют допустимое давление 0,6 МПа и присоединены по зависимой схеме к тепловым сетям, имеющим допустимое давление 1,6 МПа.

А эта разница обусловливает необходимость применения защиты от повышения давления, так как колебания последнего, возникающие, к примеру при отключении сетевых насосов, недопустимы для такой отопительной системы.

Таким образом, учитывая вероятность возникновения названных аварийных режимов необходимо разработать принципы практического применение для СТ комплекса работ по расчету параметров переходных гидравлических процессов и режимов, выявлению необходимости оснащения системы специальными устройствами защиты с определенными характеристиками (быстродействие; пропускная способность; простота в настройке и эксплуатации; стоимость). Следует сделать вывод, что приступать к проектированию и монтажу защитных устройств рационально только после проведения анализа гидравлического режима СТ.

Помимо технических проблем существуют и организационные.

Заключаются они в необходимости разграничения степени ответственности субъектов теплоснабжения единой СТ, по соблюдению требований НТД, которые регламентируют предельные отклонения параметров и объем оснащения элементов СТ устройствами автоматики, регулирования и защиты, а так же договорных обязательств сторон по качеству тепловой энергии, в т. ч.

и в аварийных ситуациях. Такие вопросы необходимо решать в порядке, определяемом Гражданским кодексом РФ (гл. 6 “Энергоснабжение”). Действующие же НТД предписывают установку специальных защитных устройств на всех элементах единой СТ, что вызывает многочисленные споры на всех стадиях взаимоотношений субъектов теплоснабжения:

  1. · разработка проектов;
  2. · выдача технических условий на присоединение систем теплопотребления;
  3. · заключение договоров теплоснабжения;
  4. · подготовка к ОЗП и получение акта готовности к эксплуатации систем теплопотребления;
  5. · расследование технологических нарушений;
  6. · определение долей ущерба, подлежащего погашению различными ведомствами.
  7. Юридические взаимоотношения между субъектами теплоснабжения регламентируются следующими основными документами: Гражданским кодексом РФ, часть 2-я, в основном главой 6 “Энергоснабжение”, а также договорами теплоснабжения, исходя из которых, требования, учитываемые при решении вопросов по защите оборудования СТ от недопустимого повышения давления теплоносителя, таковы:

· надежность теплоснабжения, т.е. глубина и длительность ограничений, а также количество и длительность отключений;

· качество тепловой энергии, т.е.

взятое ТСО обязательство выдерживать на границе балансовой принадлежности (или эксплуатационной ответственности) с потребителем оговоренных в договоре параметров: минимального перепада давления в подающем и обратном трубопроводах при давлении в подающем трубопроводе не более оговоренного значения; давления в обратном трубопроводе в пределах , удовлетворяющих по условиям прочностных характеристик оборудования потребителя и обязательном заполнении теплопотребляющих установок (ТПУ) потребителя и др.;

· требования к режимам теплопотребления, т.е. соблюдение потребителем обусловленных договором максимального часового расхода теплоносителя в подающем трубопроводе, максимального часового расхода теплоносителя, не возвращенного абонентом в тепловую сеть ТСО (в т.ч. несанкционированный водоразбор) и др.

Система защиты теплового пункта

Изобретение относится к области теплоэнергетики и может быть реализовано в тепловых пунктах с зависимой схемой присоединения систем отопления и вентиляции к тепловым сетям. Система защиты теплового пункта содержит отсечные клапаны нормально открытого типа, установленные на подающем и обратном трубопроводах.

Отсечной клапан на обратном трубопроводе отстроен на усилие закрытия, на 30-40% превышающее усилие закрытия отсечного клапана, установленного на наддающем трубопроводе. Датчик давления выполнен в виде импульсного клапана.

Последний с одной стороны с помощью импульсной трубки непосредственно подключен к обратному сетевому трубопроводу, а с другой – импульсными трубками через арматурный блок к приводам отсечных клапанов. В арматурном блоке выполнены два регулирующих дросселя и дюза. Система защиты соединена с дренажом импульсной трубкой.

Технический результат: повышение надежности системы защиты за счет использования энергии самой рабочей среды и организации безопасного скоростного режима работы отсечных клапанов. 1 ил.

Изобретение относится к области теплоэнергетики и может быть широко реализовано в тепловых пунктах с зависимой схемой присоединения систем отопления и вентиляции к тепловым сетям.

Известна система защиты теплового пункта, состоящая из ручной запорной арматуры, устройства контроля давления, установленных на подающем трубопроводе рабочей среды от сетевого подающего трубопровода к тепловому пункту, и ручной запорной арматуры, приборов контроля давления и предохранительного клапана, установленных на обратном трубопроводе от теплового пункта к сетевому обратному трубопроводу (см. Пырков В.В. Современные тепловые пункты. Автоматика и регулирование, Киев, Такi справи, 2007 г., стр.38-44 и рис.8.8.).

Существенный недостаток известной системы, несмотря на ее простоту, состоит в том, что в случае срабатывания предохранительного клапана сброс значительных объемов рабочей среды должен производиться в специальные накопительные емкости, а в крайнем случае – в канализацию.

Наиболее близкой по технической сущности и достигаемому эффекту является система защиты теплового пункта, содержащая отсечной клапан нормально закрытого типа с электронным блоком управления и датчик давления, установленные на подающем трубопроводе рабочей среды от сетевого подающего трубопровода к тепловому пункту, а также отсечного клапана нормального закрытого типа, управляемого от электронного блока, установленного на обратном трубопроводе от теплового пункта к сетевому обратному трубопроводу (см. Бриггеман А., Рухлов Ю. Приглашение к размышлению о применении систем HIPPS // журнал «Мегапаскаль» №1, 2008, стр.36-38). Данная система, позволяя исключить или минимизировать потери рабочей среды за счет автоматического отключения теплового пункта от источника аварийного давления, обладает рядом недостатков:

  • – возможность возникновения гидроударов в тепловых сетях из-за нерегламентируемой скорости закрывания отсечных клапанов;
  • – установка клапанов нормально закрытого типа создает возможность размораживания магистралей теплового пункта в зимнее время при длительном отключении теплового пункта от сетевых трубопроводов в случае аварийного срабатывания системы;
  • – необходимость в двухуровневой системе управления отсечными клапанами;
  • – необходимость дублирования датчиков давления, установки резервного электропитания из-за возможного отказа основного источника питания и датчиков;
  • – возможность отказа электронного блока управления;
  • – высокая стоимость системы и обязательность в высококвалифицированном обслуживающем персонале.
  • Решаемая задача – повышение надежности системы защиты за счет использования энергии самой рабочей среды, алгоритма закрытия и открытия отсечного клапанов и организации безопасного скоростного режима их работы.
  • Проведенный анализ уровня техники позволил установить, что заявителем не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения, а следовательно, оно соответствует критерию «новизна» и «изобретательский уровень».
Читайте также:  Запорная арматура для гидравлических систем

Сущность изобретения поясняется рисунком, на котором отражена схема предлагаемой защиты теплового пункта.

Система защиты состоит из отсечного клапана 1 нормально открытого типа с поршневым приводом 2 и пружиной 3, установленного на подающем трубопроводе 4 рабочей среды к тепловому пункту 5 от сетевого подающего трубопровода 6, а также отсечного клапана 7 нормально открытого типа с поршневым приводом 8 и пружиной 9, установленного на обратном трубопроводе 10 от теплового пункта 5 к обратному сетевому трубопроводу 11, при этом усилие пружины 9, удерживающей через поршневой привод 8 отсечной клапан 7 в открытом положении, выполнено на 30…40% сильнее пружины 3 в отсечном клапане 1. Кроме того система защиты включает импульсный клапан 12 и арматурный блок 13, при этом импульсный клапан 12 с одной стороны подключен с помощью импульсной трубки 14 непосредственно к сетевому обратному трубопроводу 11, а с другой стороны – через арматурный блок 13 к поршневым приводам 2 и 9 отсечных клапанов 1 и 7 посредством импульсных трубок 15 и 16, а кроме того, в арматурном блоке 13 выполнено два регулирующих дросселя, один дроссель 17, регулируя расход рабочей среды, поступающей в арматурный блок 13 после импульсного клапана 12, обеспечивает безопасную скорость закрытия отсечного клапана 1 и 7, а другой дроссель 18, корректируя расход рабочей среды, поступающий к приводу отсечного клапана 7, обеспечивает компенсацию влияния сопротивления импульсной трубки 15 на скорость закрытия отсечного клапана 1, ибо длина трубки 15 из-за монтажа арматурного блока 13 и импульсного блока 12 в непосредственной близости от клапана 7 во много раз может быть больше длины импульсной трубки 16. В арматурном блоке 13 установлена также дюза 19, обеспечивающая сброс рабочей среды из приводов отсечных клапанов 1 и 7 в дренаж с помощью импульсной трубки 20.

Работа системы защиты теплового пункта происходит следующим образом.

В работе разветвленной тепловой сети с зависимой схемой присоединения потребителей тепла, отличающих как по расходным, так и напорным характеристикам, могут происходить отказы в работе оборудования, например, отключение насосов перекачивающих станций (на схеме не показаны), которые в конечном итоге приводят к росту давления рабочей среды в обратном сетевом трубопроводе 11 и присоединенном к нему обратном трубопроводе 10 до значения, требующего включения защиты теплового пункта 5. При повышении давления в обратном сетевом трубопроводе 11 до настроечного значения импульсный клапан 12, который соединен импульсной трубкой 14 непосредственно с обратным сетевым трубопроводом 11 и который работает по схеме регулятора прямого действия «до себя», открывается, и рабочая среда поступает в арматурный блок 13. В арматурном блоке 13 рабочая среда, пройдя через регулирующий дроссель 17, поступает по импульсной трубке 15 к поршневому приводу 2 отсечного клапана 1, а через регулирующий дроссель 18 по импульсной трубке 16 к поршневому приводу 8 отсечного клапана 7, а кроме того, небольшой расход рабочей среды через дюзу 19 и импульсную трубку 20 сбрасывается в дренаж. Под действием давления рабочей среды, поступающей в поршневые приводы 2 и 8 отсечных клапанов 1 и 7, последние закрываются и отсекают тепловой пункт 5 от сетевых трубопроводов 6 и 11. При снижении давления в обратном сетевом трубопроводе 11 и соответственно на входе импульсного клапана 12 ниже давления настройки, импульсный клапан 12 закрывается и теплоноситель из приводов отсечных клапанов 1 и 7 сбрасывается через дюзу 19 и импульсную трубку 20 в дренаж, отсечные клапаны 1 и 7 под действием пружин 3 и 8, действующих через поршневые привода 2 и 9, открываются.

  1. Для безопасного отключения и подключения теплового пункта 5 к сетевым трубопроводам 6 и 11 в соответствии с правилами эксплуатации тепловых сетей закрытие и открытие отсечных клапанов 1 и 2 при срабатывании системы защиты должно происходить в следующей последовательности:
  2. – при закрытии первым закрывается отсечной клапан 1, установленный на подающем трубопроводе 4, а затем – отсечной клапан 7 на обратном трубопроводе 10;
  3. – при открытии – наоборот, первым должен открываться отсечной клапан 7 на обратном трубопроводе 10.
  4. Такая последовательность срабатывания отсечных клапанов 1 и 7 достигается тем, что отсечной клапан 7 на обратном трубопроводе 10 отстроен за счет пружины 9 привода 8 на усилие закрытия на 30-40% выше, чем усилие закрытия отсечного клапана 1 на подающем трубопроводе 9.

Для исключения гидроударов, особенно при высоких давлениях настройки, предусмотрена возможность регулирования скорости закрытия отсечных клапанов 1 и 7.

В зависимости от конкретной тепловой сети безопасная скорость закрытия отсечных клапанов 1 и 7 достигается с помощью регулирующего дросселя 17.

Кроме того, как отмечалось ранее, для компенсации влияния сопротивления импульсной трубки 15 на скорость закрытия отсечного клапана 1 подача рабочей среды в привод 8 отсечного клапана 7 производится через регулирующий дроссель 18.

  • Таким образом, в предлагаемой системе защиты производится безопасное отключение теплового пункта 5 при аварийном повышении давления в обратном сетевом трубопроводе 11 и его автоматическое подключение при устранении причины срабатывания, при этом надежность работы системы гарантируется за счет предложенной схемы и принципа ее работы, за счет использования энергии самой рабочей среды при соблюдении заданного алгоритма закрытия и открытия отсечных клапанов 1 и 7 со скоростью, исключающей возникновение гидроударов в тепловых сетях.
  • Сравнение существенных признаков предложенного и известных решений дает основание считать, что предложенное техническое решение отвечает критериям «изобретательский уровень» и промышленная применяемость.
  • Система защиты теплового пункта, содержащая отсечной клапан нормально закрытого типа с электронным блоком управления и датчик давления, установленные на подающем трубопроводе рабочей среды от сетевого подающего трубопровода к тепловому пункту, а также отсечной клапан нормально закрытого типа, управляемый от электронного блока, установленный на обратном трубопроводе от теплового пункта к сетевому обратному трубопроводу, отличающаяся тем, что на подающем и обратном трубопроводах установлены отсечные клапаны нормально открытого типа, при этом отсечной клапан на обратном трубопроводе отстроен на усилие закрытия, на 30-40% превышающее усилие закрытия отсечного клапана, установленного на наддающем трубопроводе, а датчик давления выполнен в виде импульсного клапана, который с одной стороны с помощью импульсной трубки непосредственно подключен к обратному сетевому трубопроводу, а с другой – импульсными трубками через арматурный блок, который дополнительно снабжена система, к приводам отсечных клапанов, при этом в арматурном блоке выполнены два регулирующих дросселя и дюза, соединенная с дренажом импульсной трубкой.
Ссылка на основную публикацию
Adblock
detector