Технология газовой сварки и принцип работы

Газовая сварка

Газовая сварка – соединение металлов путем образования сварочных ванн при нагревании поверхностей металлов пламенем высоких температур, которое образуется при сгорании смеси ацетилена и кислорода, в данном случае кислород является катализатором, который приводит к моментальному возгоранию ацетилена и образованию сварочной струи.

В некоторых случаях ацетилен может быть заменен пропан-бутаном, метаном, парами бензина (ювелирная промышленность и сварка драгоценных металлов), водород, полученный в ходе электролиза дистиллированной воды.

Горючий газ совместно с кислородом подаются в сварочной устройство и выводятся через калиброванное сопло, после этого происходит воспламенение, регулировка подачи осуществляется с помощью вентилей.

При этом пламя состоит из трех составных частей:

  • ядро;
  • восстановление;
  • факел.

Самая высокая температура в ядре пламени, но сварка производится частью между восстановлением и ядром.

Кроме того воздействие открытого высокотемпературного пламени на сварные поверхности защищает сварочную ванну от взаимодействия с воздухом.

Благодаря высокой способности к резке металлов, данный вид сварки так же используют для фигурной и высокоточной резки металлических листов, изготовления деталей и изделий.

Технология газовой сварки

  • Непосредственная сварка ацетиленовой горелкой подразумевает нагрев сварных кромок, их оплавление и соединение;
  • Наплавка, напыление.

Такой вид использования газовой сварки подразумевает использование присадочного прутка из мягкого металла, который дополнительно насыщает сварочную ванну у оплавленных кромок.

Качественное отличие двух способов заключается в расходе газовой смеси, времени и функциональности.

В первом случае требуется больший расход газа, так как оплавление двух металлических кромок требует больше температуры, чем нагрев присадочного прутка из легкоплавких металлов.

Сварка с использованием присадок намного крепче и выглядит более эстетично, занимает меньше времени по той же причине, что и меньший расход газа.

Область применения данного вида сварки обширна: сварка тонкостенных труб технологических трубопроводов, сварка технологических изделий и запчастей машин, наплавка прутка на запчасти и чугунные детали, нагрев кованных фрагментов и поковка.

Сварка состоит из следующих элементов: баллон с пропаном (или любой другой горючий газ, близкий по свойствам текучести к инертному), баллон с кислородом, который является катализатором к воспламенению, шланги и газовая резка, которая состоит из бронзовой трубки, двух вентилей-регуляторов для пропана и кислорода, на конце трубки расположено калиброванное сопло-форсунка для распыления газа под давлением.

Поджиг производится специальной кремниевой пьеза-зажигалкой.

Положительные и отрицательные критерии газовой сварки

Плюсы:

  • самым главным положительным критерием является автономность и отсутствие необходимости в источнике переменного или постоянного тока. Этот факт делает крайне эффективным использование такого вида сварки на закрытых объектах, стройках, удаленных площадках, где нет постоянного и бесперебойного источника тока;
  • регулировка расстояния сварочника от поверхности сварочных металлов и регулировка температурных режимов позволяет избежать прожогов, даже если свариваются тонколистные металлические пластины;
  • оборудование обладает малой массой, весьма мобильно для перемещений и транспортировки;
  • надежность и качество производимых работ является основной положительной характеристикой данного вида сварки.

Минусы:

  • низкая производительность, медленная высокоточная работа, которая требует от сварщика некоторых навыков;
  • высокая температура, которая имеет большой окружной диапазон;
  • расходные материалы.

Источник: https://metallmaster.org/svarochnoe-oborudovanie/gazovaya-svarka.html

Что необходимо знать о газовой сварке

Сварка при помощи газа — соединение металлических деталей методом расплавления. Исторически это один из первых появившихся видов сварки. Технология была разработана еще в конце XIX века.

Впоследствии, с развитием технологий электрической сварки (дуговой и контактной), практическая ценность газовой несколько уменьшилась, особенно для соединения высокопрочных сталей. Но она до сих пор с успехом применяется для соединения чугунных, латунных, бронзовых деталей, для техники наплавления и во многих других случаях.

Сущность процесса

Сущность метода состоит в том, что высокотемпературное пламя сварочного газа нагревает кромки свариваемых деталей и часть присадочного материала (электродную часть).

Металл переходит в жидкое состояние, образуя так называемую сварочную ванну — область, защищенную пламенем и газовой средой, вытесняющей воздух. Расплавленный металл медленно остывает и затвердевает. Так формируется сварочный шов.

Используется смесь какого-либо горючего газа с чистым кислородом, играющим роль окислителя. Наиболее высокую температуру — от 3200 до 3400 градусов — дает газ ацетилен, получаемый непосредственно при сварке от химической реакции карбида кальция с обычной водой. На втором месте находится пропан — его температура горения может достигать 2800 °C.

Реже применяются:

  • метан;
  • водород;
  • пары керосина;
  • блаугаз.

У всех альтернативных газов и паров температура пламени существенно ниже, чем у ацетилена, поэтому сварка альтернативными газами практикуется реже, и только для цветных металлов — меди, латуни, бронзы и других, с небольшой температурой плавления.

У газовой сварки есть особенности по сравнению с электрической, которые формируют как ее недостатки, так и достоинства.

Достоинства и недостатки

Как и у любой вещи или явления, преимущества газовой сварки являются прямым отражением ее недостатков, и наоборот.

Основная характеристика газосварки — более низкая скорость нагрева оплавляемой зоны и более широкие границы этой зоны. В некоторых случаях это плюс, а в других — минус.

Это плюс, если нужно сварить детали из инструментальной стали, цветных металлов или чугуна. Для них требуется плавный нагрев и плавное охлаждение. Также существует ряд сталей специализированного назначения, для которых оптимален именно такой режим обработки.

К другим плюсам относится:

  • невысокая сложность технологического процесса газовой сварки;
  • доступность, адекватная стоимость оборудования;
  • доступность газовой смеси либо карбида кальция;
  • отсутствие необходимости в мощном источнике энергии;
  • контроль мощности пламени;
  • контроль вида пламени;
  • возможность контроля режимов.

Основных минусов у газовой сварки четыре. Первый — именно низкая скорость нагрева и большое рассеивание тепла (сравнительно низкий КПД). Из-за этого практически невозможно сваривать металл толщиной свыше 5 мм.

Второй — слишком широкая зона термического влияния, то есть зона нагрева. Третий — себестоимость. Цена расходуемого ацетилена при газосварке выше, чем цена электроэнергии, затраченной на тот же объем работы.

Ее четвертый недостаток — слабый потенциал механизации. Из-за своего принципа действия фактически может быть реализована только ручная газовая сварка.

Полуавтоматический метод невозможен, автоматический — только с применением многопламенной горелки, и только при сварке тонкостенных труб либо иных резервуаров. Такой метод сложен и рентабелен лишь при производстве полых резервуаров из алюминия, чугуна либо некоторых их сплавов.

Нормативы

ГОСТ на газосварку — особый вопрос. В связи с тем, что качество шва при газовой сварке в большей степени зависит от мастерства сварщика, оно определяется субъективно.

Характер газосварочного процесса — исключительно ручной, конкретного ГОСТа на газовую сварку нет. Но существует ГОСТ 1460-2013 — на карбид кальция, из которого производится газ для сварки.

Кроме того, различными ГОСТами определяются такие параметры, как типы присадочной проволоки, давление в редукторе и баллоне, требования к генератору ацетилена. Существуют свои требования к типам применяемых шлангов и горелок, связанные с безопасностью работы.

Стандартный комплект оборудования

Для газовой сварки или резки (технологически более простой процесс) требуется оборудование. Прежде всего, это генератор ацетилена либо источник иного горючего газа (пропана, водорода, метана).Потребуется также Баллон с окислителем — кислородом, горелка, редуктор для сжатого газа (регулятор потока) и соединительные шланги.

Могут применяться различные вспомогательные устройства, например пьезозажигательный элемент, предохранительный водяной затвор для защиты от обратного пламени (в последнее время — практически обязательный элемент), и другие.

Отличительная особенность этого вида сварки — для него не требуется электропитание, поэтому работы можно производить практически в «полевых» условиях. Во многом из-за этого преимущества газовую сварку до сих пор активно используют.

Виды пламени

Одним из достоинств газосварки является возможность использования огня с разными химическими свойствами: окислительным, восстановительным, с повышенным содержанием ацетилена.

«Нормальным» считается восстановительное пламя, при котором металл окисляется с той же скоростью, что восстанавливается. Оно применяется в большинстве случаев. Для соединения деталей из бронзы и других сплавов с содержанием олова применяется только восстановительный огонь.

Окислительное пламя образуется при увеличении количества кислорода в газовой смеси. В некоторых случаях оно предпочтительно и даже необходимо, например, при соединении латуни и пайке твердым припоем.

Особое свойство окислительного пламени состоит в возможности увеличить скорость газовой сварки. Но при этом необходимо применять специальную присадку, содержащую раскислители — марганец и кремний.

Если использовать с окислительным пламенем в качестве присадочной проволоки тот же материал, что и в свариваемых деталях (за исключением латуни) — шов выйдет хрупким, с большим количеством пор и каверн.

Пламя с увеличенным содержанием горючего газа применяется для наплавки на какую-либо деталь другой детали из более твердого сплава, а также при варке деталей из чугуна и алюминия.

Технология и способы

Техника газовой сварки сильно зависит от специфики свариваемых металлов и сплавов, формы деталей, направления шва и других факторов.

Основное предназначение газосварки — обработка чугуна и цветных металлов, которые поддаются ей лучше, чем дуговой. Хуже всего «берет» она легированную сталь — из-за низкого коэффициента теплопередачи детали из нее сильно коробятся при варке газом.

Существует «правая» и «левая» методика газовой сварки. Есть также технология сварки валиком, ванночками и многослойная сварка.

«Правый» способ — это когда сварочное сопло ведут слева направо, а присадку подают вслед за движением огненной струи. Пламя при этом направлено на конец проволоки, так, что расплавленный состав — температура плавления присадки обычно ниже, чем у основного материала — ровно ложится в шов.

При «левом» способе газовой сварки — он считается основным — поступают наоборот. Горелка движется справа налево, присадка подается ей навстречу. Этот способ проще, но подходит только для тонких листов металла. Кроме того, при нем больше, чем при «правом», идет расход присадочной проволоки и горючего газа.

Сварка валиком — более трудоемкий способ, подходящий только для листового материала. Шов образуется в форме валика, но при этом качество шва очень высокое, без образования шлака, пор и воздушных лакун.

Сварка ванночками — способ, требующий от сварщика большого мастерства. При этом присадочная проволока укладывается в шов спиральным способом, проходя через разные участки пламени. Каждый новый виток спирали слегка перекрывает предыдущий. Способ хорошо подходит для соединения листов из низкоуглеродистых сталей.

Многослойная сварка — самый технологически сложный способ. Его основы — как бы наплавка одного слоя поверх следующего. При этом достигается идеальный прогрев всех нижележащих слоев. Главное — контролировать, чтобы стыки швов разных слоев не находились один под другим.

В каждом из этих видов газовой сварки могут использоваться, в зависимости от обрабатываемого металла, различные флюсы. Их задача состоит в том, чтобы защитить поверхность шва от образования окислов, нарушающих его качество.

Источник: https://svaring.com/welding/vidy/gazovaja-svarka

Технология газовой сварки – техника, режимы, оборудование

Газовая сварка является одним из видов и способов соединения металлов и их сплавов под действием высокой температуры. Сегодня поговорим об основах, ее технологии способах и приемах, достоинствах и недостатках. Данная статья будет полезна начинающим газосварщикам желающим освоить эту нелегкую профессию, а также опытным мастерам, желающим подкрепить свои знания в этой области.

Технология газовой сварки

Это такой способ сваривания деталей, во время которого оплавление кромок деталей, присадочной проволоки осуществляют при помощи газовой горелки.

Пламя образуется от горения смеси кислорода и ацетилена, кстати, его можно заменить на другие газы. Для этого применяют бутан, ацетилен, бензин, водород и другие вещества.

В зависимости от применяемых технических газов принято выделять следующие разновидности газовой сварки:

  •  ацетилено-кислородная;
  •  керосино-кислородная;
  •  бензино-кислородная ;
  • пропанобутано-кислородная.

Пламя, применяемое для сварки можно разделить на следующие составные части:

  • нормальную;
  • окислительную;
  • восстановительную.

Характеристики пламени газовой горелки

Химический состав присадки для формирования будущего сварочного шва подбирают исходя из того, какой материал сваривают, а его размер зависит от толщины свариваемого металла.

Кислород, находящийся в стальном баллоне, проходит через редуктор, снижающий давление газа и по рукавам, поступает к месту работы. Такой же путь повторяет и горючий газ (ацетилен или его аналоги).

Оборудование и материалы, используемые при газовой сварке

В горелке перемешиваются в нужной пропорции и в момент выхода смеси из нее выполняют розжиг. Пламя в данном случае выполняет сразу три функции:

  1. Расплавляет металл,
  2. Плавит материал, выполняющий роль присадки;
  3. Защищает место, в котором происходит соединение заготовок, от воздействия атмосферного кислорода.

Расход кислорода и газа регулируют с помощью вентилей, установленных на баллонах с газом.

Читайте также:  Клещи для опрессовки наконечников: описание, виды, принцип работы

Температура горения достигает своего максимума в восстановительной части пламени. Именно в ней должны располагаться присадка и кромки свариваемых деталей. Если заменить ацетилен, то температура пламени будет снижена.

Подготовка кромок

Важным этапом качественного выполнения шва является правильная разделка кромок, которая зависит от толщины подготавливаемого металла.

Толщина металла Форма разделки Угол, ° Зазор между торцами заготовок, мм Дополнительные мероприятия
0,5-2 не производится Торцевание или отбортовка кромок. Сварка без присадки, встык
1-5 не производится 0,5 — 2 Сварка с присадкой
4-8 допускается не производить 1 — 2 Двусторонний шов
5-10 V-образная 70-90 2-4 Притупление кромок 1,5 -3мм
свыше 10 Х-образная 35-45 2-4 Притупление 2-4 мм

Рекомендуем!   Виды контактной сварки

Необходимо очистить от грязи, краски, окалины область 20-30 мм от свариваемых поверхностей.

Режимы газовой сварки

Главная характеристика газовой сварки, это мощность пламени. Она зависит от типа металла и ряда других его характеристик, например, теплофизических свойств. Другими словами, чем толще металл, тем больше температура плавления металла, тем выше должна быть температура пламени.

Регулировка данного параметра осуществляется подбором номера наконечника горелки:

Кроме этого, важную роль играет наклон горелки и размер присадки. Таким образом к параметрам и режимам сварки относятся:

  1. Мощность пламени и ее характер;
  2. Диаметр присадочной проволоки;
  3. Скорость сварки, определяемая способами выполнения сварочных швов и положения мундштука относительно плоскости заготовки.

Левый способ

При таком методе сварки деталей, сварщик перемещает горелку справа налево, присадка должна располагаться впереди горелки. Пламя направляется от шва. Это обеспечивает сварщику хороший обзор шва и как результат он может обеспечить равномерность ширины и высоты валика. Такой метод сварки применяют при работе с деталями до 5 мм.

Правый способ

Такой способ предполагает, что сварщик передвигает горелку слева направо. Проволока должна перемещаться за горелкой. Пламя направляется на шов. При таком методе остывание шва длится дольше и качество шва повышается, но вот его внешний вид оставляет желать лучшего, так как сварщик не может толком видеть его формообразование. Такой метод применяют при толщине листа больше 5 мм.

Диаметр присадочной проволоки

Подбор диаметра присадки(dп) осуществляют в зависимости от толщины свариваемого металла (S), а также от способа сваривания: левый или правый.

Основные параметры газовой сварки распространенных типов и составов сталей можно представить в виде таблицы

Положение мундштука горелки

Скорость сварки ацетиленом или плавления металла регулируют изменением угла расположения мундштука относительно плоскости свариваемого металла. Он определяется теплопроводностью, толщиной и родом металла. Толстый металл с высокой теплопроводностью требует большего угла наклона горелки ввиду долгого прогрева и приложения наибольшей мощности пламени для формирования сварочной ванны.

Для понимания характера воздействия пламени на металл при различном положении достаточно взглянуть на рисунок, представленный ниже.

Как видим ,максимальное проплавление происходит при вертикальном положении горелки. Именно поэтому в начале сварки, для лучшего и быстрого прогрева мундштук располагают под углом 90 °, постепенно снижая его в соответствии с толщиной металла.

Движения горелки

В процессе работы сварщик совершает продольные и поперечные движения горелкой. Основным типов является продольное, оно направлено вдоль линии шва, предназначено для заполнения шва металлов. Поперечное движение выполняется для равномерного прогрева кромок металла и предназначено для формирования нужной ширины шва.

Рекомендуем!   Ручная дуговая сварка в среде аргона

В свою очередь, движения присадочной осуществляются такие же колебательные движения, но в противоположную сторону движению конца горелки. Чтобы избежать дефектов в сварочном шве, конец присадки не рекомендуется извлекать из сварочной ванны, особенно из восстановительной зоны пламени.

Вид движения зависит от пространственного положения шва, его геометрических размеров, толщины и рода металла.

Техника наложения швов в различных пространственных положениях

Нижнее положение

Сварка в нижнем положении является наиболее простой, контролировать процесс формирования шва в данном случае проще всего. Снижается вероятность непровара и появления других дефектов.

По технике выполнения применяют, как правило, спиралеобразные движения конца мундштука автогена. В разогретую сварочную ванну опускают присадку, делают «петлю» и повторяют операцию.

 Каждый следующий виток должен перекрывать предыдущий на 1/3 диаметра.

Тонкие листы сваривают встык отбортовкой кромок, т.е. края заготовок подгибаются и свариваются без применения присадочной проволоки. Можно использовать как правый, так и левый способы соединения.

Нахлесточные швы

Выполнять работу следует, по возможности, без перерывов. Если сделали паузу — перед повторным процессом переплавьте закристаллизовавшийся в кратере металл . Сварка производится левым способом с присадочным материалом. В работе с данным типом соединения целесообразнее применять дуговые технологи, как менее затратные и более производительные. Особенно это скажется на больших объемах.

Вертикальное положение

Возможные варианты выполнения вертикальных швов как сверху вниз, так и с подъемом снизу вверх.

В первом случае применяется правый способ(применяется при малой толщине металла), во втором методе возможны оба варианта.

Требуется определенная сноровка по удержанию сварочной ванны, не допуская ее стекания вниз. Она обеспечивается правильным положением мундштука, а также давлением газового пламени.

При значительной толщине деталей (до 20 мм) заполнение шва металлом следует выполнят двойным валиком. Подготовка кромок в данном случае не требуется, зазор между деталями должен составлять половину от толщины свариваемых заготовок.

Потолочное положение

Требует аккуратности и максимальной сосредоточенности. Перед подачей проволоки разогревают кромки. Когда они начинают плавится, в зон сварочной ванны вводят проволоку. Конец присадки быстро плавится, образуя сварной шов.

Удержание металла в сварочной ванне происходит давлением пламени. Варят правым способом в несколько приемов, каждый слой делают небольшим по толщине.

Чтобы металл не стекал по прутку, его следует держать ближе к горизонтальной плоскости потолочного шва.

Достоинства и недостатки

Сварка ацетиленом применяется в производстве различного оборудования вот уже порядка ста лет. И надо отметить, что эта технология актуальна, до сих пор несмотря на то, существует множество оборудования для выполнения электрической сварки, в том числе и с применением защитных газов.

Рекомендуем!   Сварка нержавеющей стали и черного металла электродом

Технология газовой сварки обладает рядом преимуществ:

  • для выполнения сварки нет необходимости применять сварочные аппараты;
  • доступность газовой смеси, ее можно приобрести в специализированных организациях;
  • при выполнении сварки газом нет необходимости в источнике энергии и наличия защитной среды, пламя с успехом выполняет эту функцию;
  • возможность регулировки расхода газа и соответственно температуры пламени.
  • отсутствие сильного разбрызгивания металла;
  • отсутствие УФ-излучения — работу выполняют в специальных очках газосварщика.

Между тем, газовая сварка обладает и рядом серьезных недостатков:

  • низкая скорость нагрева свариваемых металлов;
  • тепло от газовой горелки, в отличие от электродуговой имеет широкое рассеивание по поверхности свариваемых деталей и обладает низкой концентрацией в одной точке.

Экономическая составляющая газовой сварки

Нередки случаи, когда инженер технолог делает выбор в пользу газовой сварки, искренне полагая, что, таким образом, он достигнет экономии денежных средств. Но не все так просто.

Да, электродуговая сварка потребляет большое количество энергии, но выполнив простые арифметические расчеты можно убедиться, что расходы на электросварку, при том же объеме работ ниже, чем на газовую.

Поэтому перед тем как варить газосваркой, имеет подсчитать во сколько обойдется один метр шва.

Слабая концентрация тепла в процессе газовой сварки оказывает отрицательное влияние на ее результативность.

Так, при работе с листовой сталью толщиной в 1 мм, средняя скорость сварки составляет 10 метров в час, в то время как при толщине листа 10 мм, скорость упадет до 2 метров в час.

Именно поэтому газовую сварку применяют при работе со сталью толщиной до 5 мм. В остальных случаях применяют электросварку.

Ацетилено-кислородная сварка практически не механизируется.  Автоматическая сварка используется при работе с трубами, обладающими тонкой стенкой. Для этого применяют горелки, на которых установлено несколько мундштуков.

Сферы использования сварки

Сварка этого типа отличается от электродуговой плавным разогревом металла. Пожалуй, это и определило сферы ее использования. Сварка газом показывает максимальный эффект при работе со сталью толщиной до пяти миллиметров.

Эта технология сварки с успехом используется при обработке цветных металлов. Сварку газом используют для работы с материалами, требующими предварительного прогрева.

При выборе газовой сварки, проектировщик должен руководствоваться требованиями ГОСТ.

Сварку газом применяют при проведении ремонтных работ, пайке. С ее помощью проводят восстановление изношенных деталей, например, коленчатых валов. Для этого, на изношенную поверхность наплавляют слой металла. Впоследствии место наплава будет отшлифовано и доведено до необходимого размера.

Источник: https://svarkagid.ru/tehnologii/sushhnost-i-rezhimy-gazovoj-atsetilenovoj-svarki.html

Технология газовой сварки

Газовая сварка и резка металлов позволяют соединять между собой детали металлических конструкций в промышленности и быту. Это такой технологический процесс, при котором горючее газовое вещество с чистым кислородом под влиянием высоких температур сцепляет кромки поверхностей. Расстояние между ними заливают расплавленным материалом, источником которого является присадочная проволока.

Газовая сварка – довольно простая технология, имеющая много положительных аспектов:

  • Возможность проводить сварочные работы в автономном режиме. Для этого не нужен мощный источник энергии.
  • Наличие простого негабаритного оборудования, которое легко поддается транспортировке.
  • Процесс сварки регулируемый. Газовая горелка позволяет варьировать рабочую высокую температуру, скорость нагрева и угол наклона огня.

А также большие возможности использования: обработка применяется для соединения элементов изделий из углеродистой стали, свинца, меди, чугуна, латуни, бронзы, силумина, алюминия и его сплавов.

Есть и недостатки при проведении сварочных работ:

  • Большая площадь нагрева, создающая условия для деформации соседних элементов.
  • Газосварочный процесс относится к работам повышенной опасности. Сжатый кислород, и горючие смеси требуют соблюдения мер предосторожности.
  • Газовая сварка предназначена для металлов толщиной до 5 мм.
  • Отсутствие автоматизации газовой горелки.
  • Высокие требования к профессии сварщика.

Газовая сварка металлов и труб

Виды используемых газов

Кислород

Важнейший элемент для пайки и резки. Он используется в качестве катализатора, необходимого для активизации процессов обработки металлов. Для него характерно отсутствие цвета и запаха, плохая растворимость в воде и спирте.

Кислород является активным химическим соединением. Его содержат в специальных емкостях под постоянным давлением. Для кислородной сварки используют технический газ трех сортов. Каждый вид зависит от чистоты кислорода.

Это свойство влияет на качество обработки деталей.

Ацетилен

Наиболее распространенный вид, так как обеспечивает высокую температуру по сравнению с другими воспламеняющимися веществами. Он образуется на основе углеродистого кальция с водой.

Химическое вещество поглощает влагу из атмосферы и расщепляется под ее влиянием, поэтому соединение хранят в закрытых барабанах. Ацетилен взрывоопасный.

Однако это качество исчезает, если смесь растворить в жидкости.

Ацетилен – один из самых распространенных газов

Водород

Не имеет запаха и цвета. При контакте с воздухом становится взрывоопасным. Химический элемент хранят в стальных баллонах под давлением.

Коксовый газ

Образуется посредством переработки каменного угля. Это бесцветная смесь горючих веществ с выраженным сероводородным запахом, которую транспортируют по трубопроводам.

Природный газ

Используют на основе метана, добываемый из недр Земли.

Бензин и керосин

Продукты нефтеперерабатывающей отрасли. Имеют вид бесцветных жидкостей с запахом, которые легко испаряются. Газовая горелка подает их через испарители для образования пара.

Пиролизный газ

Подвергается очистке, так как состоит из углеводородов и угарного газа. Это побочный продукт предприятий по переработке нефти.

Материалы, подходящие для газовой сварки

Фото устройства горелок для газовой сварки

Газовая сварка незаменима в промышленности, строительстве, сельском хозяйстве. Она позволяет скреплять большое количество металлов.

Сварка чугуна необходима для устранения дефектов, трещин, распавшихся частей изделия. Газовая горелка при этом должна быть с небольшим пламенем, чтобы избежать зернистости сварочного шва.

Пайка бронзы предполагает использование восстановительного пламени. В работе используют проволоку, идентичную свариваемому материалу.

Обработка меди не предусматривает наличия зазора между краями. Это обусловлено текучестью материала, что может затруднять газосварочный процесс.

Углеродистые стали можно соединять разными методами сварки. Швы становятся крупнозернистыми благодаря использованию стальной проволоки с низким уровнем углерода.

Необходимое оборудование для газосварки

Газосварочное оборудование применяется с целью соединения или резки металлических элементов под действием высокой температуры. Оно предполагает использование разных видов приборов и аксессуаров, в зависимости от вида проводимых работ. Для обработки металла используются несколько компонентов.

Водяной, или жидкостный затвор

Защищает части устройств от обратного удара сварочного пламени. Это может случиться тогда, когда скорость подачи газа меньше скорости возгорания, или в случае засорения каналов мундштука горелки. Таким предохранительным устройством оснащены все генераторы.

Читайте также:  Сушильные камеры для пиломатериалов: устройство и изготовление

Баллоны с газом

Специальные цилиндрические резервуары с вентилями для хранения и транспортировки химического вещества. Определить, какой в них содержится вид, можно по цвету.

Баллоны с газом для сварки

Редуктор

Снижает давление газа или держит его на определенном уровне. Устройство бывает прямого и обратного действия. Это важный элемент газобаллонного оборудования, который определяет работоспособность всей системы. Есть разные виды устройств, среди которых – кислородный редуктор. Он приспособлен к агрессивной среде и имеет голубую маркировку.

Для газовой сварки, как правило, используются простейшие однокамерные редукторы

Газовый шланг

Обеспечивает подачу горючих жидкостей. Он сделан по особой технологии. Это многослойное изделие, выдерживающее агрессивную среду, с внутренним диаметром не больше 16 мм. В зависимости от категории, шланги маркируют красным, желтым и синим цветом.

Газовые рукава

Газовая горелка

Является основной частью сварочного оборудования. Она образует пламя, необходимо для нагревания и плавления металла. По конструкции изделие бывает двух видов: инжекторного и безинжекторного. Газовая горелка работает на разных мощностях. Выбор зависит от количества газа, подаваемого в единицу времени.

Схема устройства газовой горелки

Специальный стол

Повышает удобство работы сварщика, так как выполняет несколько функций:

  • фиксирует рабочие заготовки;
  • хранит вспомогательный инструмент;
  • является контуром заземления.

В конструкции может быть поворотная или статичная столешница.

Схема стола для сварки

Газовые резаки

Демонтаж металлоконструкции и раскрой проката невозможен без газового резака. Модели такого устройства имеют одинаковый принцип работы, но отличаются между собой размерами, конструкцией, наличием дополнительных деталей. С помощью газового резака можно выполнять работы с заготовками большой толщины. Резка происходит за счет того, что температура горения меньше температуры плавления.

Процесс условно разделяется на периоды:

Резак газовый

  1. Обрабатываемая зона разогревается до нужной температуры. Для получения факела пламени кислород смешивают с горючим веществом в определенной дозировке.
  2. Кислород способствует раскислению металла, продукты горения удаляются из рабочей зоны.

Конструкция газового резака бывает двух видов:

  • Инжекторная – двухтрубная, когда технический кислород разделяется на два потока.
  • Безинжекторная, или трехтрубная, при которой кислородный и газовый поток движется по разным трубкам, смешиваясь внутри головки.

Технологический процесс газовой резки

При изготовлении металлических конструкций используется не только газовая сварка, но и резка металлов. Она позволяет работать с такими заготовками:

Газовая резка

  • диски, кольца;
  • контурные элементы, сочетающие прямые и изогнутые линии из стали толщиной до 200 мм:
  • детали сложной конфигурации;
  • листы толщиной более 4 мм;
  • швеллеры от №16;
  • двутавровые балки от №20.

Чтобы получить высококачественный рез, поверхность металла предварительно очищается от грязи, краски, масла или ржавчины. Резка металлов – это термический способ обработки, разделенный на этапы:

  • Нагреватель доводит температуру до 1100 0С.
  • Газовая горелка подает в рабочую зону кислород.
  • Струя, соприкасаясь с металлом, воспламеняется. Ядро пламени должно располагаться на расстоянии от 1 до 1,5 мм от обрабатываемой поверхности.
  • В условиях стабильной подачи газа поток легко разрезает заготовку. Скорость струи зависит от химического состава разрезаемого материала.

Способы сварки

Техника безопасности

Газовая сварка и резка не обходятся без соблюдения правил техники безопасности. Во время работы сварщик подвергается всевозможным потенциальным опасностям. Меры предосторожности комплексные:

От поражения электротоком нужна такая защита:

Инструкции по технике безопасности

  • Заземление аппарата.
  • Изоляция токопроводящих частей оборудования.
  • Сухая, неповрежденная одежда.
  • Исключение работ в мокрую погоду.

Защита зрения требует использования специальной маски со светофильтрами.

Газовая сварка – это угроза ожогов, взрывов пожаров. Избежать аварийной ситуации помогут:

  • Экипировка в спецодежду.
  • Отсутствие в местах проводимых работ открытых горючих, легковоспламеняющихся веществ.
  • Наличие средств пожаротушения.
  • Соблюдение технологического режима.

Против отравления ядовитыми парами используют:

  • Респираторы.
  • Эффективную вентиляцию в помещении.
  • Маски, схожие с противогазами.

Видео по теме: Работа резака и обучение резки металла

Источник: https://promzn.ru/metallurgiya/tehnologiya-gazovoj-svarki.html

Изучаем технологию газовой сварки

Газовая сварка применяется уже более сотни лет. Ее технология до сегодняшнего дня является актуальной, хотя и меньше стала использоваться, так как появились новые современные методики сваривания металлических конструкций.

Основные преимущества, недостатки использования газовой сварки

Сущность газовой сварки заключается в предварительном плавлении металлических образцов, и последующим их соединении. Горение газовой смеси осуществляется с присутствием очищенного кислорода.

Преимущества газосварочной технологии

  • Оборудование для сварки недорогое, довольно простое в управлении
  • Проблемы с приобретением газовой смеси отсутствуют.
  • Нет необходимости в наличии мощного источника электропитания, защитной среды.
  • Возможность контроля пламени, регулировки его мощности.
  • Можно использовать разные режимы газовой сварки.

Недостатки

  • Газосварка образует широкую тепловую зону.
  • Низкая скорость нагревания металла.
  • Тепловая энергия плохо концентрируется (интенсивно рассеивается). В результате с увеличением толщины свариваемых изделий существенно снижается производительность.
  • Ощутимый минус в стоимости топлива/электроэнергии
  • Плохо поддается механизации. Автоматическая сварка может применяться при соединении тонкостенных труб в продольном шве с использованием многопламенной горелки.

Материалы, применяемые для газосварки

Технология газовой сварки предусматривает применение газов разного типа, на выбор которых влияет множество критериев. Одним из таких газов является кислород, который не имеет запаха и цвета. Кислород используется катализатор, активирующий процедуру плавления материалов при выполнении их резки/соединения.

Очищенный кислород для сварки получают из обычного воздуха. Для этого используется специальная аппаратура. Кислород подразделяется на три вида в зависимости от степени его очистки: 98,5-процентный, 99,2-процентный, 99,5-процентный.

Также для выполнения разнообразных манипуляций при сварке/резке металла для газовой сварки применяют – бесцветный газ, который получается при взаимодействии воды с карбидом кальция. Ацетилен в определенных условиях способен взорваться: при его нагревании более чем до 400º, давлении более 1,5 атмосферы.

Оборудование для газосварки

Предохранительные затворы водяные

Затворы предназначены для обеспечения безопасности при проведении газосварочных работ. Это основной элемент, входящий в сварочный пост для газовой сварки. Водяной затвор обязан всегда быть исправным, наполненным водой.

Газовый баллон

Баллоны для сжатых газов (кислорода и прочих) – это специальная емкость цилиндрической формы, изготовленная из стали. В горловине выполнено отверстие, в которое вкручивается запорный вентиль. Бесшовные газовые баллоны производят из легированной, углеродистой стали.

Вентили

Для газовых баллонов применяются латунные вентили. Сталь для этих целей не используется, так как поддается сильной коррозии при взаимодействии с влажным кислородом.

Редукторы

Данный элемент необходим для снижения газового давления, отбираемого из баллонов, поддерживания его на постоянном уровне, в независимости от уменьшения газового давления в баллоне.<\p>

Резиновые рукава

Рукава предназначены для подведения непосредственно в горелку газа из баллона. Для их производства используется резина, вулканизированная, с тканевыми прокладками. Рукава отдельно производятся под кислород, ацетилен. Рукава (шланги) под керосин, автомобильный бензин изготавливаются из специальной бензостойкой резины.

Горелки

Газовые горелки для сварки — это ключевые инструменты для выполнения ручной газосварки. В горелке осуществляется перемешивания в необходимых пропорциях ацетилена, кислорода. Горючая смесь, которая получается в результате смешения, подается через мундштук с установленной скоростью, при сгорании предоставляет устойчивое пламя при сваривании, например, водопровода.

Флюс

Для обеспечения защиты от внешних воздействий сварной ванне применяется специализированный флюс.

Обычно в качестве него применяют борную кислоту, которая непосредственно наносится на поверхность соединяемых металлических конструкций, на проволоку, используемую для сварочных работ.

Газосварка без применения флюса применяется для образцов из углеродистой стали. Обязательно использование флюса для свариваемых заготовок из алюминия, магния, меди, сплавов с этими металлами.

Проволока

Для выполнения соединения различных металлических конструкций также используется присадочная проволока, за счет которой образуется сварной шов.

Используемая проволока для сварочных работ должна обязательно быть чистой, на ее поверхности не должно быть лакокрасочного покрытия, ржавчины.

Вместо такой проволоки, в отдельных ситуациях применяется полоска из такого же металла, что и соединяемые детали. При выполнении сварки трубопроводов обязательно нужно надевать очки.

Особенности проведения сварочных работ для разных металлов

Какие материалы позволяют соединять способы газовой сварки?

Соединение заготовок из легированных сталей

Легированные стали характеризуются плохой теплопроводностью в отличие низкоуглеродистой, в результате коробятся при сварке больше. Низколегированные стали прекрасно свариваются газосваркой.

Сварка изделий из углеродистых сталей

Образцы из низкоуглеродистой стали можно сваривать по любой технологии газосварки. При соединении углеродистых сталей используется проволока, изготовленная из малоуглеродистой стали.

Сварка чугуна производится для заварки трещин, отколовшихся элементов конструкций, для восстановления различных дефектов. При этом пламя должно быть науглероживающим, потому что окисление вызывает выгорание кремния, в результате чего формируются чугунные зерна белого цвета.

Сварка медных образцов

Химический элемент медь характеризуется повышенной теплопроводностью. При соединении медных образцов к участку расплавления необходимо проводить больше тепла. В процессе сваривания между кромками больших зазоров не делают. Присадочным материалом при такой сварке является медная проволока, а для раскисления химического элемента используют флюсы.

Сваривание изделий, изготовленных из бронзы

Газосварка бронзы используется для выполнения ремонта литых образцов. Пламя при сварке должно обладать восстановительными свойствами, потому что при окислительном пламени из бронзы эффективно выгорает алюминий, кремний, олово. Присадочным материалом должна быть проволока, изготовленная из близкого по составу сырья соединяемому изделию.

Техника безопасности

Обязательно должна соблюдаться техника безопасности при газовой сварке:

  • запрещено выполнять газосварку вблизи с легко возгорающимися материалами, к примеру, нефтепровода;
  • работы должны выполняться в достаточно проветриваемом помещении;
  • при выполнении газосварки в замкнутом пространстве, необходимо периодически выходить на свежий воздух;
  • при газопламенной обработке металлических изделий, в помещении должна быть оборудована хорошая вентиляционная система;
  • сваривание, резка изделий должна производиться на расстоянии 10 метров от ацетиленовых генераторов, рамп перепускных;
  • запрещается применение кислородных баллонов с давлением ниже установленной нормы;
  • в корпусе генератора постоянно должен быть необходимый объем воды;
  • загрузочные короба не должны быть переполнены карбидом;
  • направление пламени должно быть противоположно источнику газа.

Заключение

Технология газовой сварки требует неукоснительно соблюдать правила техники безопасности и использовать только исправное качественное оборудование.

Сергей Одинцов

Источник: http://electrod.biz/vidy/tehnologiya-gazovoy-svarki.html

Газовая сварка: плюсы, минусы и особенности процесса

Во многих промышленных и бытовых процессах существует необходимость соединения металлов с помощью газовой сварки. В процессе газовой сварки с помощью горючего газового вещества (ацетилена, пропана, бензина) и кислорода при высокой температуре горения добиваются прочного сцепления поверхностей контактирующих металлов.

Для обеспечения надежного и безопасного процесса газовой сварки понадобится профессиональное оборудование:

1) Газовая аппаратура: баллоны с горючим газом, кислородные баллоны, сварочные порошки, кислородные редукторы, ацетиленовые генераторы, горелки разного типа действия, резиновые шланги;

2) Присадочная проволока
3) Аксессуары для проведения сварки: защитные очки, щетки из стали для очистки поверхности, молоток;
4) Стол для сварки или специальное приспособление для закрепления деталей.

Газовая сварка, как и любой технологический процесс, обладает определенными особенностями, преимуществами и недостатками. К преимуществам газовой сварки можно отнести:

1. Автономность производимых работ. При газовой сварке не требуется выделенного источника электрического питания. Современное газосварочное оборудование наделено небольшими габаритами и весом, что позволяет производить его транспортировку без специальных приспособлений. Газовую сварку можно проводить в отдаленных местах при наличии достаточного количества расходных материалов.2. Регулируемая температура пламени. Для плавления разных металлов требуется температура определенной величины. Газовая сварка дает возможность варьировать температуру не только с помощью горелки, но также используя угол наклона пламени.3. Широкий спектр применения. Газовую сварку можно применять при соединении самых разнообразных металлов: углеродистой и легированной стали, чугуна, меди, латуни, бронзы.Выделим также и недостатки при проведении газосварочных работ:1. Увеличенная область нагрева. В процессе газовой сварки термическое влияние распространяется на соседние элементы, что может привести к непредвиденным дефектам. 2. Повышенная опасность. Необходимость работы с горючими газами и сжатым кислородом связана с повышенной опасностью газосварочного процесса. При транспортировке и хранении газового оборудования необходимо соблюдать меры предосторожности.К сварочным работам не допускаются специалисты без защитной маски и костюма из прочной огнеупорной ткани.3. Невысокая эффективность. При сварке металлов с толщиной свыше 5 мм газовая сварка теряет свою эффективность.4. Повышенные требования к сварщику. Газовая сварка – процесс, который требует специальной подготовки. Для того, чтобы научиться управляться с оборудованием для газовой сварки необходим профессиональный уровень подготовки.Газовая сварка незаменима в строительных и монтажных работах, металлургической промышленности, сельском хозяйстве.Оборудование для газовой сварки дает возможность соединять большинство существующих металлов. Рассмотрим особенности сварки для некоторых из них.

Сварка чугуна

Сваркой чугуна устраняют дефекты отливок, трещины, присоединяют отколовшиеся части. Также с ее помощью производят ремонт деталей или их восстановление. При сварке используют небольшое пламя горелки, чтобы не способствовать образованию зерен белого чугуна в металле сварочного шва.

Читайте также:  Гофрированная двухслойная труба для канализации

Сварка бронзы

При работе с бронзой используют проволоку, схожую со свариваемым металлом. В связи с тем, что окислительный характер пламени может способствовать выгоранию металлов из бронзы, используют пламя восстановительного действия.

Сварка меди

Расплавленная медь обладает повышенной текучестью, затрудняющей газосварочные работы. При ее сварке не предусматривают зазор между кромками. В качестве присадке используют медный пруток. Допускается применение флюсов для удаления шлака и раскисления меди.

Сварка углеродистых сталей

Углеродистые стали очень удобны в работе с газовой сваркой. Их можно соединить многими способами газовой сварки. При сварке используют проволоку из стали с низким содержанием углерода. Сварочный шов получает крупнозернистую структуру.

Источник: https://tool-tech.ru/stati/gazovaya-svarka-plyusy-minusy-i-osobennosti-protsessa

Технология газовой сварки

Газопламенная обработка металлов – это ряд технологических процессов, связанных с обработкой металлов высокотемпературным га­зовым пламенем.

Наиболее широкое применение имеет газовая сварка и резка, которые, несмотря на более низкую производительность и качест­во сварных соединений по сравнению с электрическими способами свар­ки плавлением, продолжают сохранять свое значение при сварке тонко­листовой стали, меди, латуни, чугуна.

Преимущества газовой сварки и резки особенно проявляются при ремонтных и монтажных работах ввиду простоты процессов и мобильности оборудования. Кроме сварки и резки газовое пламя используется для наплавки, пайки, металлизации, поверх­ностной закалки, нагрева для последующей сварки другими способами или термической правки и т.д.

Газовая сварка. Газовое пламя чаще всего образуется в результате сгорания (окисления) горючих газов в технически чистом кислороде (чистота не ниже 98,5 %).

При горении горючих газов с использованием возду­ха температура газового пламени низ­кая (не выше 2000 °С), так как много теплоты расходуется на нагрев азота, содержащегося в воздухе.

В качестве горючих газов используют ацетилен, водород, метан, пропан, пропанобутановую смесь, бензин, осветительный керосин.

Рис. 1. Распределение температуры по оси нормального газового пламени: 1 – ядро; 2 – восстановительная зона; 3 – факел

Газовое сварочное ацетиленокислородное “нормальное” пламя имеет форму, схематически показанную на рис. 1 [1].

Во внутренней части ядра (зона 1) пламени происходит подогрев газо­вой смеси, поступающей из сопла до температуры воспламенения. В наружной оболочке ядра происходит частичный распад ацетилена.

Выделяющиеся частицы углерода раскалены, ярко светятся, четко выделяя очертания оболочки ядра (температура газов в ядре невелика и не превышает 1500 °С).

Зона 2 (восстановительная зона) является наиболее важной частью сварочного пламени (сва­рочной зоной). В ней происходит первая стадия сгорания ацетилена за счет кислорода, поступающего в сопло из баллона, в результате чего здесь развивается максимальная температура.

Содержащиеся в сварочной зоне газы обладают восстановительны­ми свойствами по отношению к оксидам многих металлов, в том числе и к оксидам железа. Поэтому ее можно назвать восстановительной. Содер­жание углерода в металле шва изменяется незначительно.

В зоне 3 или факеле пламени протекает догорание газов за счет ки­слорода воздуха, что отражает состав газов в факеле. Содержащиеся в факеле газы и про­дукты их диссоциации окисляют металлы, т.е. эта зона является окисли­тельной.

Вид ацетиленокислородного пламени зависит от соотношения кислорода и ацетилена (β) в газовой смеси, подаваемой в горелку.

Рис. 2 Строение ацетиленокислородного пламени: а – нормальное; б – окислительное; в – науглероживающее

При β = 1,1 … 1,2 пламя нормальное (рис. 2, а). Ядро пламени резко очерченное, цилиндрической формы с плавным закруглением, ярко светящейся оболочкой, четко выражены все три зоны.

При увеличении этого соотношения (например β = 1,5), т.е.- относительном увеличении содер­жания кислорода (окислительное пламя), форма и строение пламени из­меняются (рис. 2, б).

При этом реакции окисления ускоряются, а ядро пламени бледнеет, укорачивается и приобретает коническую заострен­ную форму.

В этом случае сварочная зона утрачивает восстановительные свойства и приобретает окислительный характер (содержание углерода в металле шва уменьшается, выжигается).

С уменьшением β (например, β = 0,5), т.е. при увеличении содержа­ния ацетилена в газовой смеси реакции окисления замедляются. Ядро удлиняется и его очертания становятся размытыми (рис. 2, в).

Количество свобод­ного углерода увеличивается, частицы его появляются в сварочной зоне. При большом избытке ацетилена частицы углерода появляются и в факе­ле пламени. В этом случае сварочная зона становится науглероживаю­щей, т.е.

содержание углерода в металле шва повышается.

Пламя заменителей ацетилена принципиально подобно ацетиленокислородному и имеет три зоны. В отличие от углеводородных газов водородно-кислородное пламя светящегося ядра не имеет (нет светящихся частиц углерода).

Одним из важнейших параметров, определяющих тепловые, а значит и технологические свойства пламени, является его температура. Она раз­лична в различных его участках как по длине вдоль его оси (рис. 1), так и в поперечном сечении. Она зависит от состава газовой смеси и сте­пени чистоты применяемых газов (рис. 3) [1].

Наивысшая температура наблюдается по оси пламени, достигая максимума в сварочной зоне на расстоянии 2 … 3 мм от конца ядра. Эта сварочная зона является основной для рас­плавления металла. С увеличением β максимальная температура возрас­тает и смещается к мундштуку горелки. Это объясняется увеличением скорости горения смеси при избытке кислорода.

При избытке ацетилена (β менее 1) наоборот, максимум температуры удаляется от мундштука и уменьшается по величине.

Рис. 3. Изменение температуры пламени различных видов

Горючие газы-заменители ацетилена, дешевле и недефицитны. Од­нако их теплотворная способность ниже, чем у ацетилена. Максимальные температуры пламени также значительно ниже.

Поэтому их используют в ограниченных объемах в технологических процессах, не требующих вы­сокотемпературного пламени (сварка алюминия, магния и их сплавов, свинца, пайка, сварка тонколистовой стали, газовая резка и т.д.).

Напри­мер, при использовании пропана и пропанобутановых смесей макси­мальная температура в пламени 2400 … 2500 °С. Их используют при сварке стали, толщиной до 6 мм, сварке чугуна, некоторых цветных ме­таллов и сплавов, наплавке, газовой резке и т.д.

При использовании водорода максимальная температура в пламени 2100 °С.

Нагрев металла пламенем обусловлен лучистым, и в основном кон­вективным теплообменом между потоком горячих газов и соприкасаю­щейся с ним поверхностью металла.

При вертикальном положении от пламени ее растекающийся поток образует на поверхности металла сим­метричное относительно центра пятно нагрева.

При наклоне пламени пятно нагрева вытягивается по направлению оси и сужается с боков. Ин­тенсивность нагрева впереди ядра выше, чем позади его.

Ввод тепла в изделие при газовой сварке происходит по большей площади пятна нагрева. Источник тепла менее сконцентрирован, чем при других способах сварки плавлением. В результате обширной площади разогрева основного металла околошовная зона (зона термического влияния) имеет большие размеры, что приводит к образованию повы­шенных деформаций сварных соединений (коробление).

При газовой сварке на металл сварочной ванны активно воздейству­ет газовая фаза всего пламени и особенно сварочной зоны, содержащей, в основном, СО + Н2 и частично пары воды, а также СО2, Н2, О2 и N2 и не­которое количество свободного углерода.

Состав газовой фазы определя­ется соотношением кислорода и горючего газа в газовой смеси, темпера­турой пламени и различен в ее различных зонах. От этого зависят метал­лургические взаимодействия газовой фазы с металлом сварочной ванны.

Основные реакции при сварке – это окисление и восстановление.

Направление реакции зависит от концентрации кислорода в газовой фазе (окислительное и науглероживающее пламя), температуры взаимо­действия и свойств оксида. При сварке сталей основное взаимодействие газовой фазы происходит с железом, т.е. образование его оксидов или восстановление. Элементы, имеющие большее сродство к кислороду, чем железо (Al, Si, Mn, Cr и т.д.

) могут интенсивно окисляться тогда, когда реакций окисления железа не проходит. Они легко окисляются не только в чистом виде, но и находясь в виде легирующих добавок, причем чем их содержание выше, тем окисление интенсивнее.

Окисление таких элемен­тов, как Al, Ti, Mg, Si и некоторых других вообще исключить не удается и для уменьшения их угара следует помимо регулирования состава газо­вой смеси использовать флюсы.

Ввиду относительно невысокого защитного и восстановительного действия пламени раскисление металла в сварочной ванне при сварке сталей достигается введением в нее марганца, кремния и других раскислителей через присадочную проволоку.

Их действие основано на образо­вании жидкотекучих шлаков, способствующих самофлюсованию свароч­ной ванны.

Образующиеся на поверхности сварочной ванны шлаки за­щищают расплавленный металл от кислорода, водорода и азота, газовой среды пламени и подсасываемого воздуха.

Содержащийся в пламени водород может растворяться в расплав­ленном металле сварочной ванны. При кристаллизации металла часть не успевшего выделиться водорода может образовать поры. Азот, попа­дающий в расплавленный металл из воздуха образует в нем нитриды.

Структурные превращения в металле шва и околошовной зоне при газо­вой сварке имеют такой же характер, как и при других способах сварки плавлением.

Однако вследствие медленного нагрева и охлаж­дения металл шва имеет более крупнокристаллическую структуру с рав­новесными неправильной формы зернами. В нем при сварке сталей с со­держанием 0,15 … 0,3 углерода при быстром охлаждении может образо­вываться видманштеттовая структура.

Чем выше скорость охлаждения металла, тем мельче в нем зерно и тем выше механические свойства ме­талла шва. Поэтому сварку следует производить с максимально возмож­ной скоростью.

Зона термического влияния состоит из тех же характерных участков, как и при дуговой сварке. Однако ее ширина значительно больше (до 30 мм при сварке стали больших толщин) и зависит от режи­ма газовой сварки.

В процессе сварки происходит расплавление основного и присадоч­ного металлов. Регулирование степени их расплавления определяется мощностью горелки, толщиной металла и его теплофизическими свойствами.

Газовой сваркой выполняют сварные соединения различного типа. Металл толщиной до 2 мм соединяют встык без разделки кромок и без зазора или, что лучше, с отбортовкой кромок без присадочного металла.

Металл толщиной 2 … 5 мм с присадочным металлом сваривают встык без разделки кромок с зазором между кромками. При сварке ме­талла свыше 5 мм используется V- или Х-образная разделка кромок.

Тавровые и нахлесточные соединения допустимы только для метал­ла толщиной до 3 мм. При большой толщине неравномерный разогрев приводит к существенным деформациям, остаточным напряжениям и возможности образования трещин.

Свариваемые кромки зачищают от загрязнений на 30 … 50 мм механическими способами или газовым пла­менем.

Перед сваркой детали сварного соединения закрепляются в сборочно-сварочном приспособлении или собираются с помощью коротких швов – прихваток.

Направление движения горелки и наклон ее к поверхности металла оказывает большое влияние на эффективность нагрева металла, произво­дительность сварки и качество шва.

Различают два способа сварки: правый и левый (рис. 4). Внешний вид шва лучше при левом способе сварки, так как сварщик видит процесс образования шва. При толщине металла до 3 мм более производительным является левый способ сварки ввиду предварительного подогрева кро­мок.

Однако при большой толщине металла при сварке с разделкой кро­мок угол скоса кромок при правом способе сварки на 10 … 15° меньше, чем при левом. Угол наклона мундштука также может быть на 10 … 15° меньше. В результате повышается производительность сварки.

Тепловое воздействие пламени на металл зависит от угла наклона оси пламени к поверхности металла (рис. 4).

Рис. 4. Правый и левый способы газовой сварки


Рис. 5. Применяемые углы наклона горелки в зависимости от толщины металла

В процессе сварки горелке сообщаются колебательные движения и конец мундштука описывает зигзагообразный путь. Горелку сварщик держит в правой руке. При использовании присадочного металла приса­дочный пруток держится в левой руке. Присадочный пруток располага­ется под углом 45° к поверхности металла.

Оплавляемому концу присадочного прутка сообщают зигзагообраз­ные колебания в направлении, противоположном движению мундштука (рис. 6). Газовая сварка может производиться в нижнем, вертикальном и потолочном положениях. При сварке вертикальных швов “на подъем” процесс удобнее вести левым способом, горизонтальных и потолочных -правым способом. ≥α

Рис. 5 Движения горелки и проволоки: а – при сварке стали толщиной более 3 мм в нижнем положении;б – при сварке угловых валиковых швов; 1 – движение проволоки;   2 – движение горелки; 3 – места задержек движения

При необходимости использования флюса он наносится на свари­ваемые кромки или вносится в сварочную ванну оплавляемым концом присадочного прутка (налипающим на него при погружении во флюс). Флюсы могут использоваться и в газообразном виде при подаче их в зону сварки с горючим газом.

Список литературы

1. Лосев В.А., Юхин Н.А. Иллюстрированное пособие сварщика. М.: Изд-во «Соуэло», 2000. 60 с.

Источник: https://www.shtorm-its.ru/info/articles/tekhnologiya-gazovoy-svarki/

Ссылка на основную публикацию
Adblock
detector