Температура плавления нержавеющей стали и чугуна

Температура расплавления, свойства и самостоятельная плавка чугуна

Чугун – сплав на основе железа и углерода. От стали он отличается содержанием последнего – 2% и больше. В отдельных марках содержится до 4% углерода. Чаще всего используют сплав с содержанием углерода 3-3,5%.

Это литейный материал. Для такого металла на первый план выходят такие его свойства, как температура плавления, а также его тепловые свойства – теплоемкость, теплопроводность, температуропроводность. Как разные химические элементы влияют на качество этого металла и можно ли его плавить самостоятельно – об этом пойдет речь в статье.

Тепловые свойства чугуна

Важная категория физических свойств материала – его тепловые свойства. К ним относятся:

  • Теплоемкость.
  • Теплопроводность.
  • Температуропроводность.
  • Коэффициент теплового расширения.

Все они зависят от состава, структуры, а значит от марки сплава. Кроме того, эти свойства металла меняются с изменением его температуры (так называемое правило смещения). Характер этой зависимости и основные физические свойства приведены в таблице.

Теплоемкость (с)

Это количество теплоты, которое необходимо подвести к телу, чтобы его температура возросла на один Кельвин (далее все величины переведены в градус Цельсия).

Теплоемкость зависит от состава сплава, а также от температуры (Т). Чем выше Т, тем больше теплоемкость. Если температура выше Т фазовых превращений, но ниже Т плавления, то

с = 0,18 кал/(Г˚С)

при Т, превышающей температуру плавления:

с = 0,23±0,03 кал/(Г˚С)

Объемная теплоемкость (отношение теплоемкости к объему вещества) для приблизительных расчетов принята:

  • чугун в твердом состоянии с’ = 1 кал/(см3Г˚С)
  • расплавленный с’ = 1,5 кал/(см3Г˚С)

Теплопроводность (λ)

Это количественная характеристика способности тела проводить тепло. Для теплопроводности не действует правило смещения. Температура материала повышается – λ понижается. Она зависит от состава сплава, а в большей степени от его структуры. Вещества, увеличивающие степень графитизации, повышают теплопроводность, а вещества, препятствующие образованию графита, понижают.

Кстати, теплопроводность расплавленного чугуна намного меньше, чем твердого. Но из-за конвекции она больше, чем λ твердого металла.

Теплопроводность для разных марок лежит в пределах:

λ =0,08…0,13 кал/ (см·сек оС)

Теплопроводность и другие теплофизические свойства в зависимости от температуры сплава приведены в конце раздела.

Температуропроводность (α)

Это физическая величина, показывающая, насколько быстро меняется температура тела. Равна отношению теплопроводности к объёмной теплоёмкости.

Для приблизительных расчетов можно принять:

α=λ для твердого металла (равна его теплопроводности);

α=0,03 см2/сек для жидкого.

Температура плавления

У этого сплава хорошие литейные свойства. Лучше, чем у стали. Жидкотекучесть высокая, а усадка мала (около 1%). Его можно расплавить при температуре на 300-400 градусов ниже чем у стали. Температура плавления чугуна:

Влияние химических элементов на свойства металла

Какой он бывает

Структура чугуна – это железная основа с графитовыми (углеродными) вкраплениями. Этот материал различают не по составу, а по форме углерода в нем:

  • Белый чугун (БЧ). Содержит карбид (цементит) – это форма углерода, такая же, как в стали. Имеет на сломе беловатый цвет. Очень твердый и хрупкий. В чистом виде почти не используется.
  • Серый чугун (СЧ). Содержит углерод в форме пластинчатого графита. Такие включения плохо влияют на качество материала. Для изменения формы зерен графита существуют специальные методы плавки и дальнейшей обработки. Графит в СЧ может быть и в форме волокон («червеобразная» форма) – так называемый вермикулярный графит (от латинского слова vermiculus – червь, как вермишель).
  • Высокопрочный. Шаровидная форма графитовых зерен. Получают введением в сплав магния.
  • Ковкий чугун. Для получения отжигают БЧ. Графитные зерна в виде хлопьев.

В итоге главное отличие его (кроме белого) от стали — наличие структуре графита. А разная форма графита определяет свойства разных марок.

Условно графитные зерна – это пустоты, трещины, а чугун – это сталь, испещренная микроскопическими трещинами.

Соответственно, чем больше пустот, тем хуже качество металла. Имеет значение также форма и взаиморасположение включений.

Однако нельзя принимать графитные зерна как исключительно вредные. Из-за присутствия графита данный материал легче обрабатывать резанием, стружка становится более ломкой. Кроме того, он хорошо противостоит трению также из-за графита.

Примеси

Конечно, этот металл содержит не только железо и углерод. В него входят те же элементы, что и в стальные сплавы – фосфор, марганец, сера, кремний и другие. Эти добавки косвенно влияют на особенности сплава – они изменяют ход графитизации. Именно от этого параметра и зависят качества материала.

  • Фосфор. Мало влияет на образование графита. Но все равно он нужен, потому как улучшает жидкотекучесть. Твердые включения фосфора обеспечивают высокую твердость и износостойкость металла.
  • Марганец. Мешает графитизации, как бы «отбеливает» чугун.
  • Сера. Как и кремний, способствует отбеливанию металла, да еще и ухудшает жидкотекучесть. Количество серы в сплаве ограничивают. Для мелкого литья не больше 0,08%, для деталей больше – до 0,1-0,12%.
  • Кремний. Сильно влияет на свойства материала, увеличивая графитизацию. В металле может содержаться от 0,3-0,5 до 3-5% кремния. Варьируя количество кремния, получают сплав с разными свойствами – от белого до высокопрочного.
  • Магний. Помогает получить материал с шаровидной формой зерен. Градус кипения магния низкий (1107˚С). По этой и другим причинам ввод магния в сплав затруднителен. Чтобы избежать его кипения, выплавку материала ведут с применением различных способов ввода магния.

Кроме обычных примесей, чугун может содержать и другие вещества. Это так называемый легированный материал. Хром, молибден, ванадий мешают процессу образования графита. Медь, никель и большинство других веществ, графитизации способствуют.

Технология самостоятельной плавки

Непромышленное выплавление чугуна – процесс очень трудоемкий. Выплавить своими руками отливки заводского качества в кустарных условиях невозможно.

Дома выплавлять этот металл нельзя. Нужно отдельное вентилируемое помещение – гараж, например. Плавку ведут в печах. В промышленности используют доменные печи, вагранки и индукционные печи.

Доменная печь – промышленный агрегат, способный расплавлять металл в огромных масштабах. В ней можно переплавлять железорудное сырье. После запуска она работает без перерыва до 5-6, а то и до 10 лет.

Затем ее останавливают, проводят обслуживание и снова запускают. Расплавление металла проходит в присутствии газов для улучшения качества материала. Для малого и среднего производства такие печи не подходят.

Топливо – кокс.

Вагранка – печь шахтного типа, как и доменная. От последней она отличается тем, что в ней не поддерживается специальный состав газов. В ней плавят не руду, а железный лом. Она больше подходит для малого производства.

Индукционная печь – современный тип оборудования. Процессом плавки в такой печи можно управлять, регулировать температуру, время нагрева и состав шихты.

Плавку ведут в тиглях из огнеупорной глины или кирпича. Стальные не подходят, хотя сталь начинает плавиться при температуре большей, чем чугун. Обязателен флюс – вещество, способствующее образованию легкоплавкого шлака.

Например, известняк (CaCO3), плавиковый шпат (CaF2). Для получения серого, а не белого чугуна в шихту добавляют ферросилиций (сплав железа с кремнием). Он улучшает образования зерен графита.

После расплавления металл выливают в песчаную или металлическую форму.

Литье металла – работа взрыво- и пожароопасная. Кроме того, необходимо обладать определенными знаниями в области металлургии. Для организации производства нужно будет оформить документацию, пройти проверки, получить разрешение и лицензию на работу.

Рекомендуем также к прочтению:

Классификация чугуна и его виды

Источник: https://oxmetall.ru/metalli/chugun/temperatura-plavleniya

Материал чугун: основные свойства и важные характеристики

Чугун состоит из углерода, железа и некоторых примесей. Это один из главных материалов черной металлургии. Чугун используются при изготовлении предметов быта и коммунального хозяйства, деталей машин и в других отраслях. Его применяют в производстве, ориентируясь и учитывая его свойства и характеристики.

Данная статья как раз и призвана рассказать вам о плотности высокопрочного, жидкого, белого и серого чугуна, его температурах плавления и удельная теплоемкость также будут рассмотрены отдельно.

У чугуна, как и у любого металла, присутствуют следующие свойства: тепловые, физические, механические, гидродинамические, электрические, технологические, химические. Каждые свойства рассмотрим подробнее.

Это видео рассказывается о структуре и составе чугунных сплавов и зависимости их свойств от определенного состава:

Теплоемкость

Тепловую емкость чугуна определяют с помощью правила смещения. Когда теплоемкость чугуна достигает температурного периода, начало которого начинается с температуры, значение которой больше фазовых превращений и заканчивается на отметке равной температуры плавления, то теплоемкость чугуна принимает значение 0,18 кал/Го С.

Если значение температуры плавления превышает абсолютное значение, то теплоемкость равна 0,23±0,03 кал/Го С. Если происходит процесс затвердения, то тепловой эффект равняется 55±5 кал. Тепловой эффект зависит от количества перлита, когда происходит перлитное превращение. Обычно он принимает значение 21,5±1,5кал/Г.

За величину объемной теплоемкости принимают произведение удельного веса на удельную теплоемкость. Для твердого чугуна эта величина составляет 1 кал/см3*ºС, для жидкого – 1,5 кал/см3*ºС.

Удельная теплоемкость чугуна равна 540 Дж/кг С.

Удельная теплоемкость чугуна и других металлов в виде таблицы

Теплопроводность

В отличие от теплоемкости, теплопроводность не определяется по правилу смещения. Только в случае изменения величины графитизации, на теплопроводность будет влиять состав чугуна.

Температуропроводность

Значение температуропроводности твердого чугуна (при крупных расчетах) может быть принята равной его теплопроводности, а жидкого чугуна – 0, 03 см2*/сек.

О том, какую чугуны имеют температуру плавления, читайте ниже.

Температура плавления

Чугун плавится при температуре 1200ºС. Это значение температуры ниже температуры плавления стали на 300 градусов. При повышенном содержании углерода, этот химический элемент имеет на молекулярном уровне тесную связь с атомами железа.

В процессе плавления чугуна и его кристаллизации углеродная составляющая не может полностью пронизать структурную решетку железа. Вследствие этого материал чугун примеряет на себя свойство хрупкости. Чугун используют для деталей, от которых требуется повышенная прочность. Однако чугун не применяют при изготовлении предметов, на которые будут действовать постоянные динамические нагрузки.

В таблице ниже указана температура плавления чугуна в сравнении с другими металлами.

Температура плавления чугуна и других металлов

Физические характеристики

Масса

Вес материала меняется в зависимости от количества связанного углерода и наличия определенного процента пористости. Удельный вес чугуна при температуре плавления может существенно снижаться в зависимости от наличия в чугуне примесей.

Кроме этого линейное расширение металла и структура чугуна меняется в зависимости от состояния каждого показателя. То есть это зависимые величины.

Удельный вес каждого чугуна отличается в зависимости от вида материала. У серого чугуна удельная масса равна 7,1±0,2 г/см3, у белого — 7,5±0,2 г/см3 , у ковкого — 7,3±0,2 г/см3.

О некоторых физических свойствах чугуна поведает видео ниже:

Объем чугуна, проходя через температуру фазовых превращений, достигает увеличения в 30%. Однако, при нагреве в 500ºС, объем увеличивается на 3%. Росту помогают графитообразующие элементы. Тормозят рост объема карбидообразующие составляющие. Та же росту препятствует нанесение на поверхность гальванических покрытий.

Содержание углерода обычно составляет не менее 2,14%. Благодаря углеродной доле чугун имеет отличную твердость. Однако пластичность и ковкость материала на этом фоне страдают.

О том, какова плотность чугуна, расскажем ниже.

Плотность

Плотность описываемого материала, чугуна, равна 7,2 гр/см3. Если сравнивать с чугуном другие металлы и сплавы, то это значение плотности достаточно высокое.

Благодаря хорошему значению плотности чугун широко применяют для литья разнообразных деталей в промышленности. По этому свойству чугун совсем незначительно уступает некоторым сталям.

Механические особенности

Предел прочности

Предел прочности чугуна при сжатии зависит от структуры самого материала. Составляющие структуры набирают свою прочность вместе с увеличением уровня дисперсности.

 На предел прочности оказывают сильное влияние количество, величина, распределение и формаграфитных включений. Предел прочности уменьшается на заметную величину, если графитные включения расположены в виде цепочки.

Читайте также:  Как выбирать электроды для сварки

Такое расположение уменьшает сплоченность металлической массы.

Предел прочности достигает максимального значения, когда графит принимает сфероидальную форму. Получается такая форма без влияния температуры, но при включении в чугунную массу церия и магния.

  • При повышении температуры плавления до 400ºС, предел прочности не изменяется.
  • Если температура поднимается выше этого значения, то предел прочности уменьшается.
  • Заметим, что при температуре от 100 до 200ºС предел прочности может снижаться на 10-15%.

Пластичность

Пластичность чугуна в большей степени зависит от формы графита, а так же зависят от структуры металлической массы. Если графитные включения имеют сфероидальную форму, то процент удлинения может достигать 30.

  • В обычном чугуне серого вида удлинение достигает только десятой доли.
  • В отожженном чугуне серого вида удлинение равно 1,5%.

Упругость

Упругость зависит от формы графита. Если графитные включения не менялись, а температура повышалась, то упругость остается при том же значении.

Модуль упругости считается условной величиной, так как он имеет относительное значение и прямо зависит от присутствия графитных включений. Модуль упругости снижается, если увеличивается количество графитных включений. Так же модуль упругости возрастает, если форма включений отдалена от глобулярной формы.

Ударная вязкость

Этот показатель отражает динамические свойства материала. Ударная вязкость чугуна повышается:

  • когда форма графитных включений приближена к шаровидной;
  • когда содержание феррита увеличивается;
  • когда уменьшается содержание графита.

Предел выносливости

Предел выносливости чугуна становится больше, когда увеличивается частота нагружений и становится больше предел прочности.

Гидродинамические свойства

Динамическая вязкость

Вязкость становится меньше, если в чугуне увеличивается количество марганца. Так же замечено уменьшение вязкости при снижении содержания серной примеси и прочих неметаллических оставляющих.

На процесс влияет значение температуры. Так вязкость становится меньше при прямопропорциональном отношении двух температур (температура проходящего опыты и начала затвердевания).

Поверхностное натяжение

Это показатель равен 900±100 дин/см2. Значение увеличивается при снижении количества углерода и терпит существенные изменения при наличии неметаллических составляющих.

Токсичность

Из чугуна часто изготавливают посуду. Дело в том, что как материал чугун не обладает токсичностью и прекрасно переносит перепады температур.

Электрические характеристики

Электропроводность чугуна оценивают с помощью закона Курнакова. Электросопротивление некоторых видов приведено ниже:

  • белый чугун — 70±20 Мк·ои·см.
  • серый чугун — 80±40 Мк·ои·см.
  • ковкий чугун — 50±20 Мк·ои·см.

По ослабевающему действию на электросопротивление элементы твердого чугуна можно расположить так: первый – кремний, второй – марганец, третий- хром, четвертый — никель, пятый – кобальт.

Технологические особенности

Жидкотекучесть может быть определенная различными методами. Этот показатель зависит от формы и свойств чугуна.

Жидкотекучесть становится больше, когда:

  • увеличивается перегрев;
  • уменьшается вязкость;
  • становится меньше затвердевание.

Так же жидкотекучесть зависит от теплоты плавления и теплоемкости.

Химические свойства

Сопротивление коррозии материала зависит от внешней среды и его структуры. Если рассматривать чугун со стороны убывающего электродного потенциала, то его составляющие имеют следующее расположение: графит-цементит, фосфидная эвтектика-феррит.

Следует отметить, что разность потенциалов между графитом и ферритом равняется 0,56 В. В случае увеличения дисперсности, сопротивление коррозии становится меньше. При сильном уменьшении дисперсности происходит обратное действие, сопротивление коррозии уменьшается. На сопротивление чугуна так же влияют легирующие элементы.

Промышленный чугун содержит примеси. Эти примеси сильно сказываются на свойствах, характеристиках и структуре чугуна.

  • Так, марганец тормозит процесс графитизации. Выделение графита приостанавливается, в результате чугун приобретает способность отбеливаться.
  • Сера ухудшает литейные и механические характеристики.
  • Сульфиды в основном образуются в сером чугуне.
  • Фосфор улучшает литейные свойства, увеличивает износостойкость и повышает твердость. Однако на этом фоне чугун все же остается хрупким.
  • Кремний больше всех влияет на структуру материала. В зависимости от количества кремня получаются белый и ферритный чугун.

Для получения определенных характеристик в чугун часто вводят специальные примеси при его изготовлении. Такие материалы получили название легированные чугуны. В зависимости от добавленного элемента чугуны могут называться алюминиевыми, хромистыми, серными. В основном элементы вводят с целю получить износостойкий, жаропрочный, немагнитный и коррозионностойкий материал.

В данном видео будет приведено сравнение свойств чугуна и стали:

Источник: http://stroyres.net/metallicheskie/vidyi/chyornyie/chugun/vazhnyie-harakteristiki.html

Сталь и чугун — чем отличаются металлы?

Среди металлов, производимых в одном технологическом процессе выделяются одни из самых распространенных — сталь и чугун. При том, что один делается в результате переделки другого, эти металлы существенно отличаются друг от друга, как по своему составу, так и по использованию в экономике.

Как варят сталь

Сталью называют железо-углеродистый сплав, в котором содержание углерода не превышает 3,4 процентов. Обычный показатель — в пределах 0,1-2,14 %.

Он снижает пластические характеристики стали, при этом делая ее тверже и прочнее. В легированной и высоколегированной содержится более 45% железа.

Упругость стали определяет ее востребованность при создании машиностроительной продукции, в первую очередь силовых пружин и рессор, амортизаторов, подвесок, растяжек и других упругих частей.

Независимо от форм и условий эксплуатации упругих частей машин, механизмов и приборов, у них есть общее замечательное качество. Оно заключается в том, что, несмотря на большие ударные, периодические и статические нагрузки у них нет остаточной деформации.

Стали классифицируют в соответствии с их назначением, химическим составом, структурой и качеством. Категорий назначений стали множество, в том числе такие как:

  • Инструментальные.
  • Конструкционные.
  • Нержавеющие.
  • Жаропрочные.
  • Устойчивые к сверхнизким температурам.

Стали могут различаться по содержанию в них углерода, от низкоуглеродистых, в которых его до 0,25%, до высокоуглеродистых с 0,6-2%. В легированных может быть от 4 до 11 и выше процентов соответствующих добавок. В зависимости от содержания различных примесей они классифицируются на стали с обыкновенными качествами, высококачественные и обладающие особо высокими качествами.

При ее производстве главное — добиться снижения до необходимого уровня содержания серы и фосфора, делающих металл ломким и хрупким. При этом применяются разные способы, окисления углерода, которые могут быть мартеновским, конверторным и электротермическим.

При мартеновском способе необходимо много тепловой энергии, которая выделяется при сжигании газа или мазута. С помощью электричества нагреваются дуговые или индукционные печи. Для конвертерного варианта внешнего источника тепла не нужно.

Здесь обычно расплавленный чугун отделяется от примесей путем продувания через него кислорода.

Сырьем для производства стали служит металлом, передельный чугун, добавки, образующие шлаки и обеспечивающие легирование стали. Сам процесс плавки может проводиться в разных вариантах. Случается, что он начинается в мартеновской печи, а заканчивается в электрической.

Или для того, чтобы получилась сталь, устойчивая против коррозии, она после плавления в электропечи сливается в конвертер. В нем она продувается кислородом и аргоном для минимизации содержания углерода. Плавится сталь при температуре 1450—1520 °C.

Как получают чугун

Сплав железа с углеродом также может именоваться чугуном. Однако в отличие от стали, в нем должно быть не менее 2,14 % углерода, придающему этому очень твердому материалу высокую хрупкость, При этом он становится менее пластичным и вязким. В зависимости от содержания в нем цементита и графита чугун может именоваться белым, серым, ковким и высокопрочным.

Первый содержит 4,3-6,67 % углерода. Он светло-серый на изломе. Используют его преимущественно для получения ковких чугунов с применением технологии отжига.  Серым называется чугун по серому цвету его излома из-за наличия графита в пластинчатом виде и наличия кремния.

В результате продолжительного отжига белого чугуна выходит чугун ковкий. У него повышенная пластичность и вязкость, удароустойчивость и большая прочность. Из него изготавливают сложные детали для машин и механизмов.

Его маркируют буквами «К» и «Ч», после которых ставятся цифры, указывающие на предел прочности и относительное удлинение.

Высокопрочный чугун отличается наличием в нем шаровидного графита, не допускающего концентрации напряжений и ослабления металлической основы.

Для его упрочнения используют лазер, что позволяет получать ответственные детали машин повышенной прочности.

Для промышленных потребностей существуют различные классификации чугуна передельного, антифрикционного, легированного и графитсодержащего. Его температура плавления в пределах 1 150 до 1 200 °C.

Чугун зарекомендовал себя универсальным, недорогим и прочным материалом. Из него изготавливают сложные и массивные детали машин и механизмов, уникальные художественные изделия. Чугунные украшения и памятники украшают многие города мира.

Столетиями служат людям искусно выполненные из него ограды старинных зданий, ступеньки в них, водопроводные и канализационные трубы.  Чугунные люки закрывают коммуникационные колодцы на улицах многих населенных пунктов.

Ванны, мойки и раковины, отопительные радиаторы из этого материала отличаются надежностью и долговечностью. Из чугуна отливают коленчатые валы и блоки цилиндров двигателей внутреннего сгорания, тормозные диски и другие детали автомобилей.

Обычно чугунные детали после отливки подвергаются дополнительной механической обработке.

Что их отличает

Сталь и чугун являются материалами, широко используемыми в промышленности, на транспорте и в строительстве. Внешне они бывают очень схожими.

Однако существуют такие основные различия между ними:

  1. Сталь является конечным продуктов сталеплавильного производства, а чугун — сырьем для него.
  2. У стали прочность и твердость выше, чем у хрупкого чугуна.
  3. В ней содержание углерода намного меньше, чем у чугуна.
  4. Сталь тяжелее чугуна, у нее выше температура плавления.
  5. Сталь можно обрабатывать путем резки, прокатки, ковки и пр., изделия из чугуна преимущественно отливаются.
  6. Чугунные изделия пористые и имеют теплопроводность значительно ниже, чем стальные
  7. Новые стальные детали имеют серебристый блеск, чугунные матовые и черные.
  8. Для придания стали особых свойств, ее могут закаливать, с чугуном это не делают.

Источник: http://vchemraznica.ru/stal-i-chugun-chem-otlichayutsya-metally/

Виды стали: нержавеющая, иные марки, температура плавления

Каждый год во всех частях нашей планеты вместе производится около полутора миллионов тысяч тонн стали. Её используют в множестве отраслей, начиная от производства зубных протезов, заканчивая деталями космических шаттлов. Для каждой отрасли найдётся такая марка стали, которая будет подходить по физическим и механическим свойствам, по структуре и химическому составу.

Разные характеристики получаются в зависимости от того, какие примеси и в каком количестве содержатся в металле, каким способом он изготовлен и как обработан. Оттого меняются итоговые свойства, такие как плотность, температура плавления, теплопроводность, предел прочности при растяжении, линейное тепловое расширение, удельная теплоёмкость и так далее.

Определение стали: что это такое?

Сталью является сплав железа с углеродом, в комплекте с другими различными элементами. При этом железа в нём должно содержаться не менее 45%. Раз речь зашла о составе, то рассмотрим классификацию по химической составляющей.

Основное разделение идёт на сталь углеродистую и легированную (пример — нержавеющая сталь). Первый вид имеет несколько подвидов по количеству процентного содержания углерода:

  • низкоуглеродистые стали, в которых содержится до 0,25% C;
  • среднеуглеродистые (до 0,55% C);
  • высокоуглеродистые (от 0,6% до 2% C).

Аналогично и второй вид разделяется на три подвида по содержанию легирующих элементов:

  • низколегированные (до 4%);
  • средне (до 11%);
  • высоколегированные (более 11%).

Кроме того, в стали могут содержаться и неметаллические включения. В зависимости от них идёт классификация по другому параметру – по качеству. Чем меньший процент неметаллических включений, тем выше качество стали. В целом здесь выделяют четыре вида:

  • обыкновенная;
  • качественная;
  • высококачественная;
  • особо высококачественная сталь.

Её состав также определяет разделение на виды по назначению. Их множество, например, криогенные стали, конструкционные, жаропрочные, нержавеющие, инструментальные и т. д. Разделение на виды идёт также по структуре:

  • ферритная;
  • аустенитная;
  • бейнитная;
  • мартенситная;
  • перлитная.

В структуре могут преобладать две фазы и даже более. Сталь в этом случае разделяют соответственно на двухфазную и многофазную.

Основные моменты технологии производства

Суть производства стали заключается в том, чтобы в процессе переработки исходного материала в нём понизилась концентрация углерода, серы, фосфора и других нежелательных составляющих. Эти элементы делают сталь ломкой и хрупкой, а избавление от них приносит повышенную прочность и жаростойкость. Исходным материалом чаще всего выступает чугун и стальной лом.

Читайте также:  Расточной резец: разновидности и основное назначение

Процесс производства может быть выполнен одним из двух основных способов, которые обобщают собой однотипные методы – это либо конвертерный, либо подовый процесс. Первый не требует дополнительных источников тепла, так как его используют для расплавленного передельного чугуна, который и так обладает достаточной температурой.

В этом случае происходит вдувание чистого кислорода (или обогащённого им воздуха, что уже устарело) в расплавленный металл, который окисляет присутствующие в чугуне элементы типа фосфора, марганца, кремния или углерода.

Это, в свою очередь, позволяет поддерживать достаточное количество тепла для пребывания стали в жидком состоянии.

При таком изготовлении может получиться три вида стали – кипящая, полуспокойная и спокойная.

Спокойная сталь обладает лучшим составом и более однородной структурой, когда кипящая содержит в себе весомое количество растворённых газов. Для полуспокойной характерны промежуточные значения между первыми двумя видами.

Естественно, что спокойная сталь, исходя из лучших характеристик, дороже. Её цена выше, чем у кипящей, примерно на 10-15%.

Подовые процессы происходят при высоких температурах, которых добиваются за счёт задействования внешнего источника тепла для переработки твёрдой шихты.

Их есть два вида – мартеновский процесс и электротермический.

Мартеновский происходит в результате нагрева исходного материала от сгорания газа или мазута, а электротермический выполняется в индукционных или дуговых печах, где нагрев идёт при помощи электричества.

При необходимости, для производства особых видов стали могут быть использованы два последовательных метода, а для отдельных специальных её видов существует иные специфические процессы.

Кроме того, появляются новые методы производства, которые ещё не стали широко используемыми, но успешно развиваются.

Такими методами является электрошлаковый переплав, электролиз, прямое восстановление стали из руды и т. д.

Обработка стали для получения специальных свойств

Чтобы придавать материалу определённые свойства или изменять их, применяют легирующие элементы и различные виды обработки.

В качестве легирующих элементов выступают некоторые металлы. Ими могут быть хром, алюминий, никель, молибден и другие. Таким образом, добиваются определённых электрических, магнитных или механических свойств, а также коррозионной устойчивости. Так, нержавеющая сталь получается, если она была легирована хромом.

Изменяются свойства стали путём обработки:

  • термомеханической (ковка, прокатка);
  • термическая (отжиг, закалка);
  • химикотермической (азотирование, цементизация).

Термическая обработка имеет в своей основе свойство полиморфизма – при нагреве и охлаждении кристаллическая решётка способная менять своё строение. Это свойство характерно основе стали – железу, потому присуще и ей.

Разные виды элементов, которые могут присутствовать в стали

Углерод. С повышением процентного содержания в стали этого элемента увеличивается её прочность и твёрдость. Но идут потери в пластичности.

Сера. Эта примесь вредна, так как вместе с железом она образует сернистое железо. Из-за него в материале возникают трещины как следствие потери связей между зёрнами при обработке высокой температурой и под воздействием давления. Негативно наличие серы сказывается и на прочности стали, её пластичности, износостойкости, коррозийной стойкости.

Феррит. Это железо, которое обладает объемноцентрированной кристаллической решёткой. Характерно, что сплавы с его наличием выходят мягкими и обладают пластичной микроструктурой.

Фосфор. Если сера уменьшает прочность при высоких температурах, то фосфор придаёт стали хрупкости при температурах пониженных. Тем не менее есть группа сталей, в которой повышено содержание этого, казалось бы, вредного элемента. Изделия из такого металла очень легко поддаются резке.

Цементит, он же карбид железа. Его влияние противоположно к влиянию феррита. Сталь становится твёрдой и хрупкой.

Конкретный пример легированной стали

Нержавеющей называют такую сталь, которая может сопротивляться коррозии в агрессивных средах или в атмосфере. Её состав был открыт в 1913 году Гарри Бреарли. Он заметил во время экспериментов, что сталь, в которой содержалось большое количество хрома, могла активно сопротивляться кислотной коррозии.

Сейчас нержавеющую сталь разделяют на три группы:

  • жаропрочная – обладает высокой механической прочностью даже при значительных температурах;
  • жаростойкая – имеет устойчивость к коррозии в условиях высоких температур и агрессивной среды. Подойдёт для использования на химических заводах;
  • коррозионно-стойкая нержавеющая сталь – обладает такой стойкостью к коррозии, которой достаточно для бытовых условий и для несложных промышленных задач. Из неё могут быть изготовлены хирургические инструменты, бытовая посуда, детали для машиностроительной промышленности, лёгкой промышленности или, например, нефтегазовой.

Чтобы получить сталь, которая будет более стойкой к коррозийным влияниям, нужно повышать в ней количество хрома. Так, для обычной среды его достаточно от 13 до 17%.

Если хрома больше 17%, то такой сплав можно использовать в более агрессивных средах.

Чтобы металл не разрушался от влияния сильных кислот, сплав стали должен содержать не только хром, но и никель с присадками молибдена, силициума, купрума.

Пределы значений различных характеристик стали — температура плавления, удельная теплопроводность и т. п.

Исходя из того, что состав сплава может быть разным, то и значение различных свойств для каждого вида стали своё. Приведём обобщённые показатели, в которых указаны пределы значений свойств.

  • коэффициент теплопроводности – 39 ккал/м*час*град;
  • плотность стали лежит в пределах (от 7,7 до 7,9)*10^3 кг/м^3;
  • температура плавления стали – в зависимости от её марки от 1300 °C до 1400 °C;
  • удельный вес – от 0,7 до 7,9 г/см^3;
  • удельная теплоёмкость (при значении температуры 20 °C) — 0,11 кал/град;
  • удельная теплоёмкость плавления – 49 кал/град;
  • коэффициент линейного расширения стали для разных видов (при температуре примерно 20 °C):
    • сталь 3 (марка 20) – 11,9 (град^-1);
    • сталь нержавеющая – 11,0 (град^-1);
  • предел прочности при растяжении:
    • для марки стали, применяемой для конструкций – 38-42 (кГ/мм^2);
    • для машиноподелочной (она же углеродистая) – 32-80 (кГ/мм^2);
    • для рельсовой – 70-80 (кГ/мм^2);
    • кремнехромомарганцовистая сталь (наибольший показатель)– 155 (кГ/мм^2).

Источник

Источник: http://stroymaster-base.ru/instrumenty-i-materialy/vidy-stali-nerzhaveyushchaya-inye-marki-temperatura-plavleniya.html

От чего зависит температура плавления стали: каким образом получается нержавеющая сталь, конструкционная и др – СибНовСтрой

Температура плавления – это такое значение нагрева кристаллического твердого тела из любого чистого вещества, при котором оно переходит в жидкое состояние.

Причем эта же температура одновременно является и температурой кристаллизации. То есть у чистых веществ эти 2 температуры совпадают.

И, таким образом, при температуре плавления чистое вещество может быть как в жидком состоянии, так и в твердом.

Нержавеющие стали не являются чистыми веществами

Если при этом произвести дополнительный нагрев, то вещество станет жидким, а его температура не будет меняться (повышаться), пока оно полностью все в рассматриваемой системе (теле) не расплавится.

Если же наоборот, начать отведение тепла – охлаждать вещество – то оно начнет застывать (переходить в твердое кристаллическое состояние) и, пока полностью не затвердеет, его температура не изменится (не понизится).

Сплавы, в том числе и нержавеющие, не являются чистыми веществами. В них помимо основного металла есть дополнительные легирующие элементы, а также примеси. То есть сплавы являются смесью веществ.

При этом температура начала перехода в жидкую фазу (она же – застывания) имеет название «точка солидуса». А температуру полного расплавления называют «точка ликвидуса».

Точно измерить температуры солидус и ликвидус (плавления) для большинства смесей веществ, включая нержавеющие сплавы, невозможно. Для их определения применяют специальные расчетные методы, устанавливаемые ГОСТ 20287 и стандартом ASTM D 97.

Значение температуры полного расплавления (ликвидус) нержавеющей стали зависит от химического состава сплава, то есть от тех металлов и примесей, из которых он состоит.

А примеси и легирующие добавки в зависимости от своей концентрации только корректируют температуру ликвидус основного или доминантного по содержанию в сплаве металла в большую или меньшую сторону.

Ликвидус зависит от химического состава сплава

Можно, для примера, рассмотреть легированные нержавеющие сплавы. Это один из видов коррозионно-стойких сплавов согласно классификации нержавеющих сталей ГОСТ 5632-2014 (введенному взамен стандарта 5632-72), по которому их сейчас производят. Кстати, классификация в этом ГОСТ произведена исходя из того, какой состав нержавеющих сталей.

В легированных нержавеющих сплавах основным металлом и элементом их химического состава является железо (Fe) с температурой плавления 1539 оC. И вот как будут влиять на температуру ликвидус таких сталей примеси и легирующие добавки в зависимости от своей концентрации в %:

  • углерод (C), марганец (Mn), кремний (Si), сера (S) и фосфор (F) – каждый по-своему в той или иной степени снижают;
  • молибден (Mo), титан (Ti), ванадий (V) и никель (Ni) – в пределах тех соотношений, в каких используются для изготовления нержавеющих сталей, снижают в той или иной степени (если рассматривать сплавы только из одного из этих элементов и железа с любыми соотношениями этих металлов, то начиная с определенной концентрации, повышают обратно);
  • алюминий (Al) – в пределах тех соотношений, в каких он используется для изготовления нержавеющих сталей, никак не влияет (если рассматривать сплавы только из Al и Fе с любыми соотношениями этих металлов, то начиная с определенной концентрации, значительно снижает);
  • вольфрам (W) – в пределах тех соотношений, в каких он используются для изготовления нержавеющих сталей, снижает, пока его концентрация не достигает 4,4 %, а потом незначительно повышает обратно;
  • хром (Cr) – в пределах тех соотношений, в каких он используются для изготовления нержавеющих сталей, снижает, пока его концентрация не достигает 23 (22) %, а потом повышает обратно;
  • никель (Ni) – в пределах тех соотношений, в каких он используются для изготовления нержавеющих сталей, снижает.

Стоит подробнее остановиться на влиянии никеля. Наибольшее влияние он оказывает на температуру ликвидус (полного расплавления) 2-х других видов нержавеющих сталей стандарта 5632. Речь идет о сплавах: одни – на железоникелевой, а другие – на никелевой основе.

Характерная особенность состава первых – в них суммарная массовая доля никеля и железа больше 65 %, причем Fe является основным элементом, концентрация Ni варьируется в пределах от 26 до 47 %, а приблизительное соотношение между ними 1:1,5.

В сплавах, отлитых на никелевой основе, никеля не менее 50 %, железа может не быть вообще, а максимальная его концентрация – 20 %.

И это не удивительно, ведь в них Ni значительно больше, чем в нержавеющих легированных сталях (на основе железа).

У железоникелевых и никелевых сплавов в первую очередь из-за Ni их температура ликвидус ниже температурного значения плавления железа. И она близка к температуре плавления самого никеля (которая равна 1455 оC).

Причем в железоникелевых сплавах никель по мере возрастания своей массовой доли способствует только снижению температуры ликвидус стали, потому что предельная его концентрация в них, как отмечалась выше, 47 %.

А дальнейшее повышение концентрации этого металла ведет к обратному повышению температуры полного расплавления никелевых сплавов.

Температура ликвидус нержавеющих сталей варьируется в пределах 1450–1520 оC. У легированных сплавов (на основе железа) она имеет значения примерно от середины этого диапазона и до верхнего его предела в 1520 оC.

У никелевых – примерно от середины и до нижнего предела в 1450 оC. Диапазон температур железоникелевых сплавов находится посередине и частично охватывает область значений для легированных и никелевых сплавов.

Температура плавления сталей варьируется в пределах 1450–1520 оC

Ее только рассчитывают для сплава с определенным составом, который согласно стандарта 5632 для одной и той же марки стали может варьироваться в процентном содержании практически всех его элементов.

Читайте также:  Советы по выбору мультиметра: типы, возможности, основные модели

Поэтому те значения температуры, которые указывают какие-либо источники, не являются точными, а лишь приблизительными.

Всем потребителям любых изделий из нержавеющей стали, не собирающимся их расплавлять (то есть утилизировать методом переплавки), вовсе не нужно знать температуру плавления этих сплавов.

Параметры термообработки указаны в приложении А стандарта 5632

Тем, кто занимается проектированием, разработкой и изготовлением деталей, продукции и конструкций из нержавеющих сталей, а также их эксплуатацией, необходимо знать совсем другие температурные параметры этих сплавов:

  • параметры термообработки нержавейки – закалки, отпуска, отжига и так далее;
  • температурные режимы других видов обработки – ковки, сварки и так далее;
  • для коррозионно-стойких марок – в каком интервале температур эксплуатировать;
  • для жаростойких марок – максимальная рекомендуемая температура применения на протяжении длительного времени (обычно составляет до 10000 часов);
  • для жаропрочных марок – рекомендуемая температура применения;
  • для жаростойких и жаропрочных марок – когда в воздушной среде начинается интенсивное окалинообразование.

Эти температуры указаны в приложении А вышеупомянутого стандарта 5632 и есть в соответствующих справочниках по металловедению, металлообработке и так далее, а также должны быть в документации производителей на соответствующие марки нержавейки.

И эти температуры намного ниже той, при которой начинается плавление нержавеющих сталей.

Так что, если ориентироваться на последнюю, то при том или ином использовании изделий из нержавейки их требуемые для определенного вида применения физические свойства будут утрачены задолго до расплавления.

Источник:

Большая Энциклопедия Нефти и Газа

Cтраница 1

Температура плавления сталей — 1300 — 1400 С, температура плавления медноникелевого сплава ( Си — 90 %, Ni — 10 %) — 1150 С. Увеличение никеля в сплаве более 10 % делает затруднительным проведение спекания и пропитку твердого сплава в стальной заготовке.  [1]

Температура плавления стали в зависимости от химического состава колеблется в пределах 1420 — 1525 С; температура разливки стали в литейные формы должна быть выше на 100 град для толстостенных отливок и на 150 град для тонкостенных отливок.  [2]

Температура плавления стали и чугуна зависит от содержания углерода.  [3]

Температура плавления стали в зависимости от химического состава колеблется в пределах 1420 — 1525 С; температура разливки стали в литейные формы должна быть выше на 100 град для толстостенных отливок и на 150 град для тонкостенных отливок.  [4]

Это явление поверхностной закалки выражается тем резче, чем выше содержание углерода и скорость охлаждения изделия после резки.

При содержании углерода свыше 0 7 % в случае резки без предварительного подогрева изделия необходимо более мощное подогревающее пламя для нагрева стали до температуры, при которой она может гореть в кислороде.  [5]

Это явление поверхностной закалки выражается тем резче, чем выше содержание углерода и скорость охлаждения изделия после резки.

Источник: http://sibnovostroy.ru/obrabotka/ot-chego-zavisit-temperatura-plavleniya-stali-kakim-obrazom-poluchaetsya-nerzhaveyushhaya-stal-konstruktsionnaya-i-dr.html

Чугун и сталь (стр. 1 из 2)

1.Сталь

(польск. stal, от нем. Stahl) — деформируемый (ковкий) сплав железа с углеродом (и другими элементами), характеризующийся эвтектоидным превращением. Содержание углерода в стали не более 2,14 %, но не менее 0,022 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь).

В древнерусских письменных источниках сталь именовалась специальными терминами: “Оцел”, “Харолуг” и “Уклад”. В некоторых славянских языках и сегодня сталь называется “Оцел”, например в чешском.

Сталь — важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей народного хозяйства.

Стали с высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении — для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.

Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием[источник не указан 122 дня] форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация.

В связи с этим все пружинные сплавы кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям.

В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении — релаксационной стойкостью

Классификация

Стали делятся на конструкционные и инструментальные. Разновидностью инструментальной является быстрорежущая сталь.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода — на низкоуглеродистые(до 0,25 % С), среднеуглеродистые(0,3—0,55 % С) и высокоуглеродистые(0,6—0,85 % С); легированные стали по содержанию легирующих элементов делятся на низколегированные, среднелегированные и высоколегированные.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь различается на аустенитную, ферритную, мартенситную, бейнитную или перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

Характеристики стали

Плотность — 7700-7900 кг/м³.

Удельный вес — 75537-77499 н/м³ (7700-7900 кгс/м³ в системе МКГСС).

Удельная теплоемкость при 20 °C — 462 Дж/(кг·°C) (110 кал/(кг·°C)).

Температура плавления — 1450—1520 °C.

Удельная теплота плавления — 84 кДж/кг (20 ккал/кг).

Коэффициент теплопроводности — 39 ккал/(м·час·°C) (45,5 Вт/(м·К)).[источник не указан 136 дней]

Коэффициент линейного теплового расширения при температуре около 20 °C :

сталь Ст3 (марка 20) — (1/град);

сталь нержавеющая — (1/град).

Предел прочности стали при растяжении :

сталь для конструкций — 38-42 (кГ/мм²);

сталь кремнехромомарганцовистая — 155 (кГ/мм²);

сталь машиностроительная (углеродистая) — 32-80 (кГ/мм²);

сталь рельсовая — 70-80 (кГ/мм²);

2.Чугу́н

— сплав железа с углеродом (содержанием обычно более 2,14 %), характеризующийся эвтектичесим превращением. Углерод в чугуне может содержаться в виде цементита и графита.

В зависимости от формы графита и количества цементита, выделяют: белый, серый, ковкий и высокопрочные чугуны. Чугуны содержат постоянные примеси (Si, Mn, S, P), а в некоторых случаях также легирующие элементы (Cr, Ni, V, Al и др.). Как правило, чугун хрупок.

Мировое производство чугуна в 2007 составило 953 млн тонн (в том числе в Китае — 477 млн тонн).

Виды чугунa

Белый чугун

В белом чугуне весь углерод находится в виде цементита. Структура такого чугуна — перлит, ледебурит и цементит. Такое название этот чугун получил из-за светлого цвета излома.

Серый чугун

Серый чугун – это сплав железа, кремния (от 1,2- 3,5 %) и углерода, содержащий также постоянные примеси Mn, P, S. В структуре таких чугунов большая часть или весь углерод находится в виде графита пластинчатой формы. Излом такого чугуна из-за наличия графита имеет серый цвет.

Ковкий чугун

Ковкий чугун получают длительным отжигом белого чугуна, в результате которого образуется графит хлопьевидной формы. Металлическая основа такого чугуна: феррит и реже перлит.

Высокопрочный чугун

Высокопрочный чугун имеет в своей структуре шаровидный графит, который образуется в процессе кристаллизации. Шаровидный графит ослабляет металлическую основу не так сильно как пластинчатый, и не является концентратором напряжений.

Половинчатый чугун

В половинчатом чугуне часть углерода (более 0,8 %) содержится в виде цементита. Структурные составляющие такого чугуна — перлит, ледебурит и пластинчатый графит.

Классификация

В зависимости от содержания углерода серый чугун называется доэвтектическим (2,14-4,3 % углерода), эвтектическим (4,3 %) или заэвтектическим (4,3-6,67 %). Состав сплава влияет на структуру материала.

В зависимости от состояния и содержания углерода в чугуне различают: белые и серые (по цвету излома, который обуславливается структурой углерода в чугуне в виде карбида железа или свободного графита), высокопрочные с шаровидным графитом, ковкие чугуны, чугуны с вермикулярным графитом. В белом чугуне углерод присутствует в виде цементита, в сером — в основном в виде графита.

В промышленности разновидности чугуна маркируются следующим образом:

передельный чугун — П1, П2;

передельный чугун для отливок — ПЛ1, ПЛ2,

передельный фосфористый чугун — ПФ1, ПФ2, ПФ3,

передельный высококачественный чугун — ПВК1, ПВК2, ПВК3;

чугун с пластинчатым графитом — СЧ (цифры после букв “СЧ”, обозначают величину временного сопротивления разрыву в кгс/мм);

антифрикционный чугун

антифрикционный серый — АЧС,

антифрикционный высокопрочный — АЧВ,

антифрикционный ковкий — АЧК;

чугун с шаровидным графитом для отливок — ВЧ (цифры после букв “ВЧ” означают временное сопротивление разрыву в кгс/мм и относительное удлиненние(%);

чугун легированный со специальными свойствами — Ч.

3.До́менная печь,

до́мна — большая металлургическая, вертикально расположенная печь шахтного типа для выплавки чугуна, ферросплавов из железорудного сырья. Первые доменные печи появились в Европе в середине XIV века, в России — около 1630 г.

Описание

Доменная печь представляет собой сооружение высотой до 35 м, высота ограничивается прочностью кокса, на котором держится весь столб шихтовых материалов.

Загрузка шихты осуществляется сверху, через типовое загрузочное устройство, которое одновременно является и газовым затвором доменной печи.

В домне восстанавливают богатую железную руду (на современном этапе запасы богатой железной руды сохранились лишь в Австралии и Бразилии), агломерат или окатыши. Иногда в качестве рудного сырья используют брикеты.

Доменная печь состоит из пяти конструктивных элементов: верхней цилиндрической части — колошника, необходимого для загрузки и эффективного распределения шихты в печи; самой большой по высоте расширяющейся конической части — шахты, в которой происходят процессы нагрева материалов и восстановления железа из оксидов; самой широкой цилиндрической части — распара, в котором происходят процессы размягчения и плавления восстановленного железа; суживающейся конической части — заплечиков, где образуется восстановительный газ — монооксид углерода; цилиндрической части — горна, служащего для накопления жидких продуктов доменного процесса — чугуна и шлака.

В верхней части горна располагаются фурмы — отверстия для подачи нагретого до высокой температуры дутья — сжатого воздуха, обогащенного кислородом и углеводородным топливом.

На уровне фурм развивается температура около 2000 °C. По мере удаления вверх температура снижается, и у колошников доходит около 270 °C. Таким образом в печи на разной высоте устанавливается разная температура, благодаря чему протекают различные химические процессы перехода руды в металл.

Процессы, протекающие в печи

В верхней части горна, где приток кислорода достаточно велик, кокс сгорает, образуя диоксид углерода и выделяя большое количества тепла.

C + O2 = CO2 + Q

Диоксид углерода, покидая зону, обогащенную кислородом, вступает в реакцию с коксом и образует монооксид углерода — главный восстановитель доменного процесса.

CO2 + C = 2CO

Поднимаясь вверх монооксид углерода взаимодействует с оксидами железа, отнимая у них кислород и восстанавливая до металла:

Fe2 O3 + 3CO = 2Fe + 3CO2

Полученное в результате реакции железо каплями стекает по раскаленному коксу вниз, насыщаясь углеродом, в результате чего получается сплав, содержащий 2,14 — 6,67 % углерода. Такой сплав называется чугуном.

Кроме углерода в него входят небольшая доля кремния и марганца. В количестве десятых долей процента в состав чугуна входят также вредные примеси — сера и фосфор.

Кроме чугуна в горне образуется и накапливается шлак, в котором собираются все вредные примеси.

Ранее, шлак выпускался через отдельную шлаковую лётку. В настоящее время и чугун, и шлак выпускают через Чугунную летку одновременно. Разделение чугуна и шлака происходит уже вне доменной печи — в желобе, при помощи разделительной плиты. Отделенный от шлака чугун сливается в чугуновозные ковши и вывозится в сталеплавильный цех.

Источник: http://MirZnanii.com/a/190804/chugun-i-stal

Ссылка на основную публикацию
Adblock
detector