Формула для расчета потерь давления в трубопроводе

Главная / Технические статьи / Расчет потерь напора в трубопроводах

  • В процессе течения нефтепродуктов имеют место потери напора на трение hτ и местные сопротивления hMC.
  • Потери напора на трение
  • Потери напора на трение при течении ньютоновских жидкостей в круглых трубах определяются по формуле Дарси—Вейсбаха

Формула для расчета потерь давления в трубопроводе

  1. где λ — коэффициент гидравлического сопротивления; L, D — соответственно длина и внутренний диаметр трубопровода; W — средняя скорость перекачки; g — ускорение силы тяжести.
  2. Величина коэффициента гидравлического сопротивления λ в общем случае зависит от числа Рейнольдса Re = W • D/v и относительной шероховатости труб ε = kэ/D (здесь v — кинематическая вязкость нефтепродукта при температуре перекачки; кэ — эквивалентная шероховатость стенки трубы).
  3. При ламинарном режиме перекачки (Re = ReKp) расчет λ выполняется по формуле Стокса
  4. λ = 64/Re
  5. В переходной зоне (ReKp < Re < Rerp) расчет λ наиболее точно может быть выполнен по формуле Гипротрубопровода
  6. λ=(0,16·Re-13)·10-4
  7. Эквивалентная шероховатость kэ стальных труб
Вид труб Состояние труб К-,, мм
Диапазон
изменения
Среднее
значение
Бесшовные Новые и чистые 0,01-0,02 0,014
Сварные Новые и чистые 0,03-0,12 0,05
С незначительной коррозией после очистки 0,1-0,2 0,15
После нескольких лет эксплуатации 0,15-0,3 0,2
Умеренно заржавленные 0,3-0,7 6,5
Старые заржавленные 0,8-1,5 1
Сильно заржавленные или с большими отложениями 2-4 3

В зоне гидравлически гладких труб турбулентного режима (ReKp < Re < Rel) расчет λ выполняется по формуле Блазиуса

Формула для расчета потерь давления в трубопроводе

Для расчета λ в зоне смешанного трения турбулентного режима (ReI < Re = ReII) наиболее часто используется формула Альтшуля

Формула для расчета потерь давления в трубопроводе

В зоне квадратичного трения турбулентного режима (Re > ReII) расчет λ обычно ведут по формуле Шифринсона

Формула для расчета потерь давления в трубопроводе

Нетрудно видеть, что формулы Стокса, Блазиуса и Шифринсона могут быть представлены зависимостью одного вида

Формула для расчета потерь давления в трубопроводе

где А, т — коэффициенты, величина которых для каждой зоны трения неизменна.

Однако формула Альтшуля к этому виду не приводится. Это исключает возможность решения гидравлических задач в общем виде.

Ту же задачу можно было решить следующим образом. При Re = ReI еще справедлива формула Блазиуса, а при Re = RеI уже можно пользоваться формулой Шифринсона. Учитывая, что переходные числа Рейнольдса Альтшулем рекомендовано находить по формулам:

ReI=10/ε; ReII=500/ε.

для зоны смешанного трения получаем:

Формула для расчета потерь давления в трубопроводе

Поделив почленно получим:

Формула для расчета потерь давления в трубопроводе

откуда

Формула для расчета потерь давления в трубопроводе

Различие в выражениях для расчета коэффициента А объясняется тем, что в первом случае не было сделано необходимое алгебраическое преобразование

Формула для расчета потерь давления в трубопроводе

Среднеквадратичная погрешность аппроксимации В.ДБелоусова по сравнению с формулой Альтшуля составляет около 5%. Связано это, в частности, с тем, что ее автор не стремился сделать погрешность вычислений минимальной, а исходил из условия равенства коэффициентов X на границах зоны смешанного трения и соседних зон.

Автору совместно с аспиранткой Н.В. Морозовой удалось свести уравнение Альтшуля к виду со среднеквадратичной погрешностью 2,6%. Это было сделано следующим образом.

Представим формулу Альтшуля в виде

Формула для расчета потерь давления в трубопроводе

  • Недостатком данной записи является то, что расчетный коэффициент 0,11(68 + ε · Re) °-25 является функцией числа Рейнольдса. Вместе с тем из формул следует, что в зоне смешанного трения справедливо неравенство
  • 10 < ε · Re < 500.
  • Задаваясь значениями г • Re в этом диапазоне, сначала рассчитали величины функции 0,11(68 + ε · Re)0’26, а затем, используя метод наименьших квадратов, заново описали полученные точки выражением 0,206( ε · Re)0’15.
  • Подставив его получили искомую зависимость

Из нее видно, что в зоне смешанного трения турбулентного режима величины коэффициентов А и т равны 0,206 • е0,15 и 0,1 соответственно. Среднеквадратичная погрешность расчетов по формуле относительно формулы Альтшуля — менее 3%, что меньше, чем по другим известным аппроксимациям.

Следует подчеркнуть, что учет наличия переходной зоны приводит к изменению критического числа Рейнольдса. Кроме того, А.Д. Альтшуль, строго говоря, для переходных чисел Рейнольдса рекомендует диапазоны

Чтобы уточнить величины Reкр, ReI ReII и найти величину Re.x,, воспользуемся следующим способом. При Re = ReKp еще справедлива формула Стокса» но в то же время уже справедлива формула Гипротрубопровода. То есть можно составить уравнение

Освобождаясь от знаменателя, получаем квадратное уравнение 0,16-10-4 · Reкр-13 · 10-4 · Reкp-64 = 0, единственным положительным корнем которого является Reкp~2040.

Рассуждая аналогично, можно найти все остальные характерные числа Рейнольдса. Приравняв формулы Гипротрубопровода и Блазиуса, получаем Reкp = 2800. Из равенства правых частей формулы Блазиуса и формулы находим, что ReI = 17,5/ε. Наконец, приравняв правые части формулы и формулы Шифринсона, несложно найти, что ReII = 531/ε.

  1. В тех случаях, когда необходимо, чтобы зависимость потерь напора на трение от расхода Q была выражена в явном виде, удобно использовать обобщенную формулу Лейбензона
  2. где β – расчетный коэффициент, равный
  3. Формула получается подстановкой выражения в формулу Дарси—Вейсбаха .
  4. Учитывая, что формулу Гипротрубопровода можно привести к виду
  5. Рекомендуемые величины коэффициентов А, β и m
Режим
течения
Зона
трения
Область
использования
A β m
Лами
нарный
Re< 2040 64 4,15 1
Переходная зона 2040

Гидравлический расчет на потерю напора или как рассчитать потери давления в трубе

В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.

Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.

Формула для расчета потерь давления в трубопроводе

Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу.

Это значит у нас потеря напора по длине составляет 0,1 МПа. Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров.

Как я не однократно говорил каждые 10 метров это одна атмосфера давления.

Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.

Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.

Формула для расчета потерь давления в трубопроводе

h-потеря напора здесь она измеряется в метрах.
λ-коеффициент гидравлического трения, находится дополнительными формулами о которых опишу ниже.
L-длина трубопровода измеряется в метрах.
D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с2
  • А теперь поговорим о коэффициенте гидравлического трения.
  • Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.
  • Напомню эту формулу (она применима только к круглым трубам):

Формула для расчета потерь давления в трубопроводе

V-Скорость потока жидкости. Измеряется [Метр/секунда].
D-Внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
ν-Кинематическая вязкость. Это обычно для нас готовая цифра, находится в специальных таблицах.

Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:

Формула для расчета потерь давления в трубопроводе

Здесь Δэ – Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа [мм] с [м].

d-внутренний диаметр трубы, то есть диаметр потока жидкости.

Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться “эквивалентом шероховатости труб” и не как иначе, а то результат будет ошибочный. Эквивалент означает – средняя высота шероховатости.

В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.

Вообще в целом, эти формулы показывают и доказывают, что при увеличении скорости или увеличении расхода, всегда увеличивается сопротивление движению потока жидкости, то есть увеличиваются потери напора. Причем увеличиваются не пропорционально, а квадратично.

Это говорит о том, что единица увеличения расхода не соответствует затратам на потерю напора. То есть иметь большую скорость потока жидкости в трубе экономически не целесообразно. Поэтому бывает дешевле увеличить диаметр потока.

Читайте также:  Полипропиленовые муфты размеры таблица для полипропиленовых труб

В других статьях обязательно опишу, как посчитать, какой диаметр нам необходим.

Таблица: (Эквивалент шероховатости)

Формула для расчета потерь давления в трубопроводе

Кому интересно узнать (Эквивалент шероховатости ) для металлопластика, полипропилена и сшитого полиэтилена, то это соответствует и относится к пластмассам. То есть в таблице характеристика будет: Пластмассовые (полиэтилен, винипласт).

Так же хочу обратить внимание, на то, что со временем, на внутренних станках труб, образуется налет, что увеличивает шероховатость труб. Так что имейте ввиду что со временем потери напора только увеличиваются.

Таблица: (Кинематическая вязкость воды)

Формула для расчета потерь давления в трубопроводе

График:

Формула для расчета потерь давления в трубопроводе

Как видно из графика, что при повышении температуры кинематическая вязкость уменьшается, а это значит, что и сопротивление движению воды уменьшается.

Это значит, что при потоке горячей воды, “потери напора” будут меньше чем при потоке холодной воды. Кто живет в многоквартирных домах, если обратит внимание, то скорость и напор горячей воды всегда выше чем напор холодной воды.

Есть исключения, но в большинстве случаев это так. Теперь вы понимаете, почему это так.

  1. А теперь давайте решим задачу:
  2. Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м3/с, длина трубы L=900м, температура t=16°С.
Дано:
D=500мм=0.5м
Q=2 м3/с
L=900м
t=16°С
Жидкость: H2O
Найти: h-?

Видео:

  • Купить программу
  • Решение: Для начала найдем скорость потока в трубе по формуле:
  • V=Q/ω
  • Сдесь ω – площадь сечения потока. Находится по формуле:
  • ω=πR2=π(D2/4)=3.14*(0,52/4)=0,19625 м2
  • V=Q/ω=2/0,19625=10,19 м/с
  • Далее находим число Рейнольдса по формуле:
  • Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241

ν=1,16*10-6=0,00000116. Взято из таблицы. Для воды при температуре 16°С.

Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.

  1. Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.
  2. λ=0,11(Δэ/D)0,25=0,11*(0,00025/0,5)0,25=0,01645
  3. Далее завершаем формулой:

Формула для расчета потерь давления в трубопроводе

h=λ*(L*V2)/(D*2*g)=0,01645*(900*10,192)/(0,5*2*9,81)=156,7 м.

Ответ: 156,7 м. = 1,567 МПа.

  • Также хочу обратить внимание на то, что мы в задаче рассматривали трубу которая на всей своей длине имеет горизонтальное положение.
  • Давайте рассмотрим пример, когда труба идет вверх под определенным углом.

Формула для расчета потерь давления в трубопроводе

В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.

Мы рассмотрели потерю напора по длине трубопровода, также существуют местные сопротивления в виде заужения и поворотов, которые тоже влияют на потерю напора. О них будет описано в других моих статьях. И я обязательно приготовлю статью о том как подобрать насос по напору, чтобы удовлетворить требования расхода жидкости, в зависимости от потерь напора. Если что-то не понятно пишите в комментарии, обязательно отвечу!

  1. Чтобы в ручную не считать всю математику я приготовил специальную программу:
  2. Скачать калькулятор расчетов гидравлического сопротивления.

Потери напора в трубопроводе по длине и местные: расчет по формулам и таблицам Шевелева

Третья статья в цикле статей по теоретическим основам гидравлики посвящена определению потерь напора.

Как рассказывалось ранее, при своем движении жидкость испытывает сопротивление, что выражается затратами ее энергии, т.е. затратами ее напора, что называют потерями напора.

Формула для расчета потерь давления в трубопроводе

Два вида потерь напора

Потери напора принципиально делятся на два типа:

Формула для расчета потерь давления в трубопроводеПотери напора: местные (обведены кружком) и по длине

  1. Местные (на рисунке обведены красным)
  2. Потери по длине (на рисунке подчеркнуты зеленым)

Местные потери конкретно на данном рисунке: поворот, задвижка (условное обозначение по ГОСТ – «бантик»), еще один поворот и внезапное (т.е. не плавное) расширение.

Потери по длине здесь – это потери на прямолинейных участках l1, l2, l3, l4.

Местные потери

Местные потери напора (говорят также “потери напора на местные сопротивления“) – это потери напора, которые происходят в основном из-за вихреобразования в конкретных местах трубопровода (потому и «местные»).

Любое препятствие на пути движения потока жидкости является местным сопротивление. Чем сильнее деформируется поток, тем больше будет потеря напора. Например, на рисунке ниже показано внезапное сужение трубопровода.

Хорошо видны 4 вихревые зоны до и после сужения.

Формула для расчета потерь давления в трубопроводеМестное сопротивление — внезапное сужение

Местную потерю напора можно определить, зная коэффициент сопротивления для данного сопротивления (обозначается буквой дзэта ζ, не имеет размерности) и среднюю скорость потока в сопротивлении V.

hм = ζ · V2 / 2g

(g – ускорение свободного падения, g = 9,81 м/с2 , для быстрых подсчетов можно округлить до 10 м/с2)

Пример. Определить потерю напора в вентиле, установленном на трубе внутренним диаметром d = 51 мм, при расходе Q = 2 л/с.

Сначала по уравнению неразрывности (ссылка на статью 2) определим среднюю скорость движения жидкости.

V = Q / ω = 4 · Q / 3,14 · d² = 4 · 0,002 / 3,14 · 0,051² = 0,98 м/с

  Расчет потерь напора по таблицам Шевелева

Теперь необходим коэффициент сопротивления вентиля. Такие данные берут из гидравлических справочников или у производителей конкретной арматуры. По справочным данным находим, что коэффициент местного сопротивления вентиля равен 6.

Тогда потеря напора на вентиле: hвент = ζ · V²/ 2 · g = 6 · 0,98² / 2 · 10 = 0,29 м.

Формула для расчета потерь давления в трубопроводеИллюстрация местных потерь напора

При расчете трубопроводных систем (внутренний водопровод здания, наружная водопроводная сеть и т.п.

) обычно высчитывают не все сопротивления (так как их может быть очень много), а только самые существенные, создающие наибольшие сопротивления: например, счетчик воды.

Потеря напора на остальных местных сопротивлениях учитывается коэффициентом, на который умножается значение потерь напора по длине (1,05 – 1,15 для наружных сетей, 1,1 – 1,3 для внутренних сетей здания).

Потери по длине

Потери напора по длине – потери напора на участках трубопровода. Возникают из-за работы сил трения. (сила трения возникает между слоями движущейся жидкости). Величина потерь напора, также, как и местных потерь, напрямую зависит от скорости движения жидкости. При достаточно высокой скорости усиливается влияние шероховатости стенок трубы.

Формула для расчета потерь давления в трубопроводе

Потерю напора по длине можно увидеть по разнице в уровнях воды между двумя пьезометрами

Точное определение потерь напора по длине является довольно сложной задачей, для этого необходимо устанавливать режим движения жидкости (бывает ламинарный и турбулентный), подбирать расчетную формулу для коэффициента гидравлического трения в зависимости от числа Рейнольдса Re, характеризующего степень турбулизации потока. Это изучается студентами в рамках курса механики жидкости.

При этом для быстрого расчета потерь напора были составлены специальные таблицы для инженеров, позволяющие, зная материал трубы и ее диаметр, а также расход воды, быстро определить так называемые удельные потери напора (сколько напора теряется на 1 м трубы).

Эта величина называется 1000i, значение 1000i = 254 означает, что поток, проходя 1 м такой трубы теряет 254 мм (миллиметра) напора, т.е. 0,254 метра. Это значение также называется «гидравлический уклон», и это нельзя путать с геодезическим, т.е. просто с физическим уклоном (наклоном) самой трубы.

Для расчета стальных труб используют таблицы Шевелева.

Скачать таблицы таблицы Шевелева  в формате PDF можно на нашем сайте.

Таблицы Шевелева для определения потерь напора

Формула для расчета потерь давления в трубопроводе

Например, из данного фрагмента видно, что если вода с расходом 1,50 л/с пойдет по трубе диаметром 50 мм, то скорость в этой трубе будет 0,47 м/с, а 1000i составит 9,69 мм на метр (на каждом метре трубы теряется 9,69 миллиметров напора).

  Понятие гидростатического давления

Чтобы определить, сколько метров напора будет потеряно на всем участке – нужно перемножить 1000i с длиной участка. Чтобы ответ получился в метрах, 1000i делят на 1000.

  • Итак, потери напора по длине: hl = 1000i·l / 1000 = i·l
  • Если наш участок трубы имеет длину, скажем, 25 метров, то потеря напора на нем:
  • hl = 9,69*25/1000 = 0,24 м.
  • Учтем и местные сопротивления, тогда полная потеря напора на данном участке:
  • ­hl = 0,24*1,3 = 0,31 м.

Таблицы были переведены в электронный вид в виде программы, созданной Любчуком Ю.Е.
Загрузить программу “Таблицы Шевелева” можно с нашего сайта.

С помощью этой программы, можно легко посчитать потери напора в трубах из различных материалов. В следующей статье подробно опишем, как пользоваться данной программой на задаче из жизни.

Самостоятельный гидравлический расчет трубопровода

  • Содержание: [Скрыть]

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя.

Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Формула для расчета потерь давления в трубопроводе

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.
Читайте также:  Изготовление сцепки для мотоблока своими руками

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Формула для расчета потерь давления в трубопроводеУсловный диаметр (проход) трубопровода (DN) – это условная  безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода.

Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.

Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний,  по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Формула для расчета потерь давления в трубопроводе

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re

Онлайн-калькулятор потерь напора в зависимости от расхода жидкости и сечения трубопровода

Зачем нужен этот калькулятор?

Калькулятор умеет рассчитывать потери напора в метрах в зависимости от длины и диаметра вашего трубопровода, а также объемного расхода жидкости. Зная потери напора, вы сможете более точно подобрать нужный насос под вашу задачу. 

Наш калькулятор использует формулу расчета одного немецкого института гидродинамики. Из всех протестированных нами формул эта в наибольшей степени соотносится с нашим собственным опытом. 

Чтобы воспользоваться калькулятором, введите исходные данные, потом нажмите кнопку “Рассчитать”.  Ниже этой кнопки будут показаны результаты расчета.  

Подробнее о заполнении полей калькулятора 

Поясним чуть подробнее как заполнить исходные данные. 

  • Внутренний диаметр трубопровода Измеряется в миллиметрах. Лучше измерять диаметр труб непосредственно штангенциркулем, а не ориентироваться на справочные данные. Также обратите внимание на то, что диаметр требуется именно внутренний. В каталогах труб часто указывают номинальный диаметр труб, который чуть больше, чем внутренний. 
  • Длина трубопровода Измеряется в метрах. Длина трубопровода — это сумма длин всех прямых участков трубы, а не расстояние между начальной и конечной точкой. К примеру, если у вас труба идет 10 метров по земле, а затем поднимается на 3 метра вверх, и идет 2 метра в обратном направлении, то в калькулятор нужно занести число 15. Это важно учитывать на предприятиях, где трубы часто обходят препятствия и имеют технологические изгибы.
  • Расход жидкости В этом пункте вы самостоятельно можете выбрать единицы измерения: литры в минуту или кубометры в час. Расход жидкости — это количество жидкости, которое протекает через трубу за определенное время. Например, если 60 литровая бочка наполняется водой за 1 час, значит расход воды составляет 60 литров в час или 1 литр в минуту.
  • Перекачиваемая жидкость Для удобства в калькулятор уже занесены данные по кинематической вязкости некоторых жидкостей при температуре 20 °C. Если ваша жидкость присутствует в перечне, то просто выберите ее из выпадающего списка. Данные кинематической вязкости в поле ниже заполнятся автоматически. Если вашей жидкости в списке нет, то выберите пункт «Другая жидкость», после чего у вас появится возможность редактировать поле «Кинематическая вязкость» вручную. Кроме того, если температура перекачиваемой жидкости меньше 15 °С или больше 25 °С, то значение кинематической вязкости тоже лучше ввести вручную.
  • Кинематическая вязкость Измеряется в квадратных метрах в секунду. В большинстве случаев это поле заполняется автоматически. Однако если у вас есть данные по вязкости, лучше укажите это значение вручную. Для этого нужно выбрать в поле выше пункт «Другая жидкость», после чего откроется возможность ручного редактирования кинематической вязкости. Данные о кинематической вязкости можно взять из специализированных таблиц или измерить непосредственно при помощи вискозиметра. Обратите внимание, что вязкость сильно зависит от температуры жидкости — измеряйте ее при той же температуре, при которой она будет находиться в трубах. В данном калькуляторе используется система СИ, поэтому вводите данные именно в квадратных метрах в секунду. В таблицах данные часто указывают в сантистоксах: 1 сСт = 0.000001 м²/с. Не запутайтесь в количестве нулей!
  • Материал внутренней поверхности трубопровода Калькулятор содержит справочник материалов, из которых надо выбрать материал внутренней стенки трубопровода. Это нужно для определения шероховатости внутренней поверхности трубы. Если вы знаете шероховатость, то лучше указать ее вручную, выбрав пункт списка «Указать шероховатость вручную». После чего вам станет доступно для редактирования поле «Шероховатость внутренней поверхности».
  • Шероховатость внутренней поверхности Измеряется в условных миллиметрах. Эти данные можно взять из специализированных справочников. 

Результаты расчёта

После того, как вы заполните данные, нажмите кнопку «Рассчитать». Калькулятор отобразит следующие показатели:

  • Площадь поперечного сечения трубопровода Рассчитывается в квадратных метрах. Этот показатель полезен для дальнейших расчетов.
  • Относительная шероховатость трубопровода Измеряется в условных миллиметрах. Этот показатель может отличаться от номинальной шероховатости, но может и совпадать с ней. Он пригодится для ручных расчетов.
  • Скорость течения жидкости Измеряется в метрах в секунду. Это средняя скорость каждой частицы жидкости вдоль оси трубопровода. Скорость у стенок трубопровода может отличаться.
  • Число Рейнольдса Указывает на точность проводимых измерений и на вид течения жидкости. Чем меньше это число, тем точнее измерения. Но погрешность нарастает медленно, поэтому вплоть до сотен тысяч расчеты можно считать точными.  
  • Режим течения Важный показатель. Выделяют три режима: ламинарный — расчеты в этом режиме достаточно точные, а потери на трение не велики. Всегда стремитесь к тому, чтобы ваша жидкость текла в ламинарном режиме. Турбулентный режим — в этом случае точность расчетов еще на достаточном уровне, но в турбулентном режиме значительная часть энергии потока жидкости будет тратиться внутреннее трение, турбулентность и нагрев. Эксплуатировать трубы в таком режиме можно, но КПД системы будет на несколько процентов ниже, чем в ламинарном режиме. Переходный же режим характеризуется тем, что в перекачиваемой жидкости периодически возникают и угасают турбулентные колебания. Гарантировать точность расчетов в таком режиме нельзя. Если ваша система уже работает в переходном режиме, то выбирайте насос с большим запасом по мощности. Если же вы только проектируете систему, то избегайте переходного режима — измените диаметр труб либо на больший, либо на меньший.
  • Коэффициент гидравлического трения Безразмерный показатель, используемый при расчете гидравлических систем.
  • Потери напора по длине Это ключевой показатель, для расчета которого калькулятор и создавался. Потери измеряются в метрах водяного столба. Показатель напора отвечает на вопрос: насколько метров жидкость может подняться вверх. Он нужен для правильного подбора насоса. 
Читайте также:  Цанга пластиковая для телескопической трубы

Обратите внимание:

1. Любой калькулятор потерь напора (в том числе и этот) дает погрешности при вычислениях. Поэтому сделанный расчет должен быть подкреплен практической проверкой. Если вы нашли очевидную ошибку или неточность в расчетах нашего калькулятора, пожалуйста, сообщите нам на электронную почту.  

2. Калькулятор рассчитывает потери давления жидкости без учета изменения высоты труб. Подробнее об этом будет указано в конце статьи.

Пример расчета потери напора для подбора насоса

Допустим, мы хотим подобрать насос для двухэтажного дома. Нам нужно, чтобы на втором этаже могла работать стиральная машина, для которой нужно обеспечить давление в 6 м.в.ст.

Источником воды будет колодец или скважина, глубиной 10 метров. Сам насос будет располагаться на уровне воды.

Начертим эскиз водопровода и укажем все известные нам размеры: расстояние от скважины до дома 15 метров, расстояние от земли до места установки стиральной машины 5 метров. 

Формула для расчета потерь давления в трубопроводе

Сложив все эти величины, получаем длину трубопровода 30 метров. Вводим это значение в калькулятор. Заполняем остальные значения: в нашем случае внутренний диаметр труб будет 15 мм.

В качестве значения расхода воды укажем максимальное потребление для стиральной машины — 30 литров в минуту. В качестве жидкости у нас будет выступать вода, а в качестве труб — полипропилен.

Нажимаем кнопку рассчитать, и получаем потери напора в 22 метра водяного столба. 

Но это еще не окончательный ответ. Из рисунка выше видно, что в нашем случае насос должен поднять воду на высоту 15 метров (10 метров высота скважины и 5 метров — высота дома). Значит к 22 м.в.ст. нужно добавить еще 15 метров высоты.

Общие потери напора, с учетом подъема воды из скважины до высоты второго этажа составят 22+15=37 метров водяного столба. Однако, если взять насос с максимальным напором в 37 м.в.ст. он сможет лишь поднять воду до уровня стиральной машины. Впускной клапан стиральной машины, по условиям нашей задачи, требует как минимум 6 м.в.ст.

избыточного давления. Их тоже нужно прибавить к результату: 37+6=43 метра водяного столба. 

Вот теперь мы можем подобрать насос для данного водопровода: нам подойдут любые модели, способные обеспечить напор более 43 метров водяного столба.  

Но, обратите внимание на получившуюся цифру: при длине линии в 30 метров у нас на одно только трение теряется аж 22 метра напора. Если трубы еще не проложены, то стоит выбрать диаметр труб побольше. Посмотрим, что будет, если мы всего на треть увеличим диаметр трубы. Диаметр у нас был 15, а теперь возьмем трубы диаметром 20 мм. Остальные данные оставим теми же. 

Формула для расчета потерь давления в трубопроводе

Нажимаем кнопку «рассчитать» и получаем потери давления — чуть более 6 метров водяного столба. Значит мы сократили потери напора с 22 до 6 метров.

Прекрасный результат! Не забудем прибавить к этой цифре 15 метров подъема по высоте и 6 метров давления, которое мы хотим видеть на выходе из трубопровода: 6+15+6=27 метров водяного столба.

Получается, что увеличив диаметр труб всего на треть, мы можем существенно снизить требования к насосу. В нашем случае, для сечения труб ⌀ 20 мм нам подойдет любой насос с рабочим давлением более 27 метров водяного столба. 

Расчет потери напора сделан. Как теперь подобрать насос?

Когда известны расчетные параметры трубопроводной сети, можно подобрать насос онлайн, пользуясь нашим каталогом. Для подбора насоса онлайн вам необходимо будет указать желаемую производительность насоса и его напор (давление). Подробнее об онлайн-подборе насосов на нашем сайте написано здесь. 

Как вариант, вы всегда можете позвонить нам или написать на электронную почту, чтобы переложить подбор насоса на наших приветливых и заботливых менеджеров по продажам. 

Гидравлический расчет трубопровода – Проф Трубы

26.02.2019 Формула для расчета потерь давления в трубопроводе

Содержание

  • 1 Введение
  • 2 Расчетная часть
  • 3 Заключение

Трубопровод как способ транспортировки жидких и газообразных сред является самым экономичным способом во всех отраслях народного хозяйства. А значит он  всегда будет пользоваться повышенным вниманием у специалистов.

Гидравлический расчет при проектировании трубопроводной системы позволяет определить внутренний диаметр труб и падение напора в случае максимальной пропускной способности трубы. При этом обязательным является наличие следующих параметров: материал, из которого изготовлены трубы, вид трубы, производительность, физико-химические свойства перекачиваемых сред.

Производя вычисления по формулам, часть заданных величин можно взять из справочной литературы. Ф.А.Шевелев, профессор, доктор технических наук разработал таблицы для точного расчета пропускной способности.

Таблицы содержат значения внутреннего диаметра, удельного сопротивления и др параметры. Помимо этого, существует таблица приближенных значений скоростей для жидкостей, газа, водяного пара для упрощения работы с определением пропускной способности труб.

Используется в коммунальной сфере, где точные данные  не столь необходимы.

Способ установки гидравлических трубопроводов

Расчетная часть

  • Расчет диаметра начинается с использования формулы равномерного движения жидкости (уравнение неразрывности):
  • q = v*ω,
  • где q — расчетный расход
  • v — экономическая скорость течения.
  • ω — площадь поперечного сечения круглой трубы с диаметром d.
  • Рассчитывается по формуле:
  • ω = πd² / 4,
  • где d — внутренний диаметр
  • отсюда  d = √4*q/ v*π

Скорость движения жидкости в трубопроводе принимается равной 1,5-2,5 м/с.

Это то значение, которое соответствует оптимальной работе линейной системы.

  1. Потери напора (давления) в напорном трубопроводе находят по формуле Дарси:
  2. h = λ*( L/ d)*( v2/2g),
  3. Как проводится гидравлический расчет
  4. где g — ускорение свободного падения,
  5. L — длина участка трубы,
  6. v2/2g — параметр, обозначающий скоростной (динамический) напор,

λ — коэффициент гидравлического сопротивления, зависит от режима движения жидкости и степени шероховатости стенок трубы. Шероховатость подразумевает неровность, дефект внутренней поверхности трубопровода и подразделяется на абсолютную и относительную. Абсолютная шероховатость — это высота неровностей. Относительную шероховатость можно рассчитать по формуле:

ε = е/r.

Шероховатость различна по форме и неравномерна по длине трубы. В связи с этим в расчетах принимается усредненная шероховатость k1 — поправочный коэффициент.

Данная величина зависит от целого ряда моментов: материал труб, длительность эксплуатации системы, различные дефекты в виде коррозии и др. При стальном исполнении трубопровода значение применяется равным 0,1-0,2 мм.

В то же время, в иных ситуациях параметр k1 можно взять из таблиц Ф.А.Шевелькова.

  • В том случае, если длина магистрали невысока, то местные потери напора (давления) в оборудовании насосных станций примерно одинаковы потерям напора по длине труб. Общие потери определяются по формуле:
  • h = P/ρ*g, где
  • ρ — плотность среды

Случаются ситуации, когда трубопровод пересекает какое-либо препятствие, например, водные объекты, дороги и др. Тогда используются дюкеры — сооружения, представляющие собой короткие трубы, прокладываемые под преградой. Здесь тоже наблюдается напор жидкости. Диаметр дюкеров находится по формуле (с учетом, что скорость течения жидкости составляет более 1 м/сек):

  1. h = λ*( L/ d)*( v2/2g),
  2. h = I*L+ Σζ* v2/2g
  3. ζ — коэффициент местного сопротивления

Разность отметок лотков труб в начале и конце дюкера принимается равной потерям напора.

  • Материал для гидравлических трубопроводов
  • Местные сопротивления рассчитываются по формуле:
  • hм = ζ* v2/2g.

Движения жидкости бывают ламинарные и турбулентные. Коэффициент hм зависит от турбулентности потока (число Рейнольдса Re). С увеличением турбулентности создаются дополнительные завихрения жидкости, за счет чего величина коэффициента гидравлического сопротивления увеличивается. При Re › 3000 всегда наблюдается турбулентный режим.

Коэффициент гидравлического сопротивления при ламинарном режиме, когда Re ‹ 2300, рассчитывается по формуле:

λ = 64/ Re

В случае квадратичности турбулентного потока ζ будет зависеть от архитектуры линейного объекта: угла изгиба колена, степенью открытия задвижки, наличием обратного клапана. Для выхода из трубы ζ равна 1. Длинные трубопроводы имеют местные сопротивления порядка 10-15% на трение hтр. Тогда полные потери:

Производя расчеты, выбирается насос, исходя из параметров подачи, напора, действительной производительности.

Заключение

Гидравлический расчет трубопровода вполне возможно произвести в онлайн-ресурсе, где калькулятор выдаст искомую величину. Для этого достаточно ввести в качестве исходных величин состав труб, их длину и машина выдаст искомые данные (внутренний диаметр, потери напора, расход).

Помимо этого, существует онлайн версия программа «Таблицы Шевелева» ver 2.0. Она проста и удобна в освоении, является имитатором книжного варианта таблиц и также содержит калькулятор подсчета.

Компании, занимающиеся прокладкой линейных систем, имеют в своем арсенале специальные программы для расчетов пропускной способности труб. Одна из таких «Гидросистема» разработана российскими программистами, популярна в российской же промышленности.

Источник:

Самостоятельный гидравлический расчет трубопровода

Ссылка на основную публикацию
Adblock
detector