Характеристика и применение титана и сплавов на его основе

Свойства и сферы применения титана

  • Дата: 17-08-2015
  • Просмотров: 443
  • Рейтинг: 34

Титан и сплавы на его основе широко используются в самых разных сферах.

Прежде всего, титановые сплавы нашли широкое применение в строительстве различной техники благодаря своей высокой коррозийной стойкости, механической прочности, небольшой плотности, жаропрочности и множеству других характеристик.

Рассматривая свойства и применение титана, нельзя не отметить его довольно высокую стоимость. Однако она в полной мере компенсируется характеристиками и долговечностью материала.

Титан имеет высокую прочность и температуру плавления, отличается от других металлов долговечностью.

Основные свойства титана

Титан находится в IV группе четвертого периода периодической системы химических элементов. В самых устойчивых и наиболее важных соединениях элемент является четырехвалентным. Внешне титан напоминает сталь.

Является переходным элементом. Температура плавления достигает почти 1700°, а кипения — 3300°.

Что касается такого свойства, как скрытая теплота плавления и испарения, то у титана она практически в 2 раза превышает аналогичный показатель для железа.

Имеет 2 аллотропические модификации:

  1. Низкотемпературную, которая способна существовать до температуры в 882,5°.
  2. Высокотемпературную, устойчивую от температуры в 882,5° до температуры плавления.

Таблица характеристик титана и его сплавов.

Такие свойства, как удельная теплоемкость и плотность, располагают титан между двумя материалами с наиболее широким конструкционным использованием: железом и алюминием.

Механическая прочность титана почти в 2 раза превышает эту характеристику у чистого железа и практически в 6 раз у алюминия.

Однако свойства титана таковы, что он способен поглощать в больших количествах водород, кислород и азот, что негативно отражается на пластических характеристиках материала.

Материал характеризуется очень низкой теплопроводностью. Для сравнения, у железа она выше в 4 раза, а у алюминия в 12. Что касается такого свойства, как коэффициент термического расширения, то при комнатной температуре он имеет относительно низкое значение и возрастает с увеличением температуры.

Титан имеет малые модули упругости. При повышении температуры до 350° они начинают уменьшаться практически по линейному закону. Именно этот момент является существенным недостатком материала.

Титан характеризуется довольно большим значением удельного электросопротивления. Оно может колебаться в достаточно широких пределах и зависит от содержания примесей.

Титан является парамагнитным материалом. Для таких веществ характерно снижение магнитной восприимчивости в процессе нагревания. Однако титан является исключением — при повышении температуры его магнитная восприимчивость значительно возрастает.

Сферы применения титана

Медицинские инструменты из титанового сплава отличаются высокой коррозионной прочностью, биологической стойкостью и пластичностью.

Свойства материала обеспечивают довольно широкий спектр сфер его применения. Так, в больших объемах сплавы титана используются в строении судов и различной техники.

Налажено применение материала в качестве легирующей добавки к сталям высокого качества и в качестве раскислителя. Сплавы с никелем нашли применение в технике и медицине.

Такие соединения имеют уникальные свойства, в частности, они обладают памятью формы.

Налажено применение компактного титана в производстве деталей электровакуумных приборов, использующихся в условиях высоких температур. Свойства технического титана позволяют использовать его в производстве клапанов, трубопроводов, насосов, арматуры и других изделий, создаваемых для эксплуатации в агрессивных условиях.

Сплавы характеризуются недостаточной теплопрочностью, однако имеют высокую коррозийную стойкость. Это позволяет использовать различные сплавы на основе титана в химической сфере.

К примеру, материал применяется в изготовлении насосов для прокачки серной и соляной кислоты.

На сегодняшний день только сплавы на основе этого материала можно использовать в производстве разного рода оборудования для хлорной промышленности.

Сплавы на основе этого материала используются при изготовлении бронетанковой части. А замена разнообразных конструкционных элементов, которые используются в транспортной промышленности, позволяет снижать расход топлива, увеличивать полезную грузоподъемность, повышать предел усталости изделий и улучшать множество других характеристик.

При производстве оборудования для химической промышленности из титана самое важное свойство — коррозионная стойкость металла.

Материал хорошо подходит для использования в строительстве железнодорожного транспорта. Одна из главных задач, которую нужно решить на железных дорогах, связана со снижением мертвого груза. Использование прутков и листов из титана позволяет существенно снизить общую массу состава, уменьшить размеры букс и шеек, сэкономить в тяге.

Вес имеет довольно существенное значение и для прицепного транспорта. Использование титана вместо стали при производстве колес и осей тоже позволяет существенно повысить полезную грузоподъемность.

Свойства материала делают возможным его использование в автомобилестроении. Материал характеризуется оптимальным сочетанием прочностных и весовых свойств для систем отведения отработанных газов и витых пружин.

Применение титана и его сплавов позволяет существенно снизить объем отработанных газов, уменьшить затраты топлива и расширить применение лома и производственных отходов путем их переплава.

Материал и содержащие его сплавы имеет множество преимуществ по сравнению с прочими используемыми решениями.

Главной задачей разработки новых деталей и конструкций является уменьшение их массы, от которой в той или иной степени зависит движение самого транспортного средства.

Снижение веса движущихся узлов и частей делает потенциально возможным сокращение затрат топлива. Детали из титана неоднократно доказывали свою надежность.

Они довольно широко применяются в авиакосмической промышленности и конструкциях гоночных автомобилей.

Использование этого материала позволяет не только уменьшить вес деталей, но и решить вопрос снижения объема отработанных газов.

В строительстве широко используется сплав титана с цинком. Этот сплав характеризуется высокими механическими показателями и устойчивостью к коррозии, отличается высокой жесткостью и пластичностью. В составе сплава содержится до 0,2% легирующих добавок, выполняющих функции модификаторов структуры.

Благодаря алюминию и меди обеспечивается требуемая пластичность. Кроме того, использование меди позволяет повысить предельную прочность материала на растяжение, а сочетание химических элементов способствует снижению коэффициента расширения.

Сплав применяется и для производства длинных лент и листов с хорошими эстетическими характеристиками.

Титан часто используется в космических технологиях благодаря его легкости, прочности и тугоплавкости.

Среди главных качеств сплава титана с цинком, важных конкретно для строительства, можно отметить такие химические и физические свойства, как высокая устойчивость к коррозии, хороший внешний вид и безопасность для человеческого здоровья и окружающей среды.

Материал отличается хорошей пластичностью, без проблем поддается глубокой вытяжке, что позволяет использовать его в кровельных работах. У сплава нет никаких проблем с пайкой.

Именно поэтому различные объемные конструкции и нестандартные архитектурные элементы вроде куполов и шпилей изготавливаются из цинк-титана, а не меди или оцинкованной стали.

В решении подобных задач данный сплав является незаменимым.

Сфера использования сплава очень широка. Его применяют в фасадных и кровельных работах, из него изготавливаются изделия различной конфигурации и практически любой сложности, он широко применяется в производстве разнообразных декоративных изделий типа водостоков, отливов, кровельных коньков и т.д.

Этот сплав отличается очень продолжительным сроком службы. Более столетия он не будет требовать покраски и частых текущих ремонтных работ. Также среди существенных преимуществ материала следует выделить его способность восстанавливаться. Несущественные повреждения в виде царапин от веток, птиц и т.п. через какое-то время устраняются сами по себе.

Требования к строительным материалам становятся все более серьезными и строгими. Исследовательские компании ряда стран изучали почву вокруг зданий, построенных с использованием сплава цинка и титана.

Результаты исследований подтвердили, что материал является полностью безопасным. Он не имеет канцерогенных свойств и не вредит человеческому здоровью.

Цинк-титан является негорючим стройматериалом, что дополнительно повышает безопасность.

У сплава две степени окисления. С течением времени он меняет цвет и теряет металлический блеск. Сначала цинк-титан становится светло-серым, а еще через некоторое время приобретает благородный темно-серый оттенок. В настоящее время материал намеренно подвергается химическому старению.

Использование титана и его сплавов в медицине

Титан отлично совместим с человеческой тканью, поэтому активно применяется в области эндопротезирования.

Титан нашел широкое применение и в медицинской сфере. Среди преимуществ, которые позволили ему стать таким популярным, нужно отметить высокую прочность и устойчивость к коррозии. Кроме того, ни у одного из пациентов не было выявлено аллергии на титан.

В медицине применяются коммерчески чистый титан и сплав Ti6-4Eli. С его использованием изготавливаются хирургические инструменты, разнообразные внешние и внутренние протезы, вплоть до сердечных клапанов. Из титана производятся инвалидные коляски, костыли и прочие приспособления.

Ряд исследований и экспериментов подтверждает отличную биологическую совместимость материала и его сплавов с живой человеческой тканью.

Мягкие и костные ткани срастаются с этими материалами без проблем. А низкий модуль упругости и высокий показатель удельной прочности делают титан очень хорошим материалом для эндопротезирования.

Он заметно легче, чем жесть, сталь и сплавы на основе кобальта.

Таким образом, свойства титана позволяют активно использовать его в самых разнообразных сферах — от изготовления труб и кровли до медицинского протезирования и построения космических аппаратов.

Источник: https://moyasvarka.ru/izdeliya/titan-svoistva-i-primenenie.html

Металл титан

Калькулятор металлопроката

Титан обладает высокой прочностью, хорошей коррозионной стойкостью и при этом имеет сравнительно небольшую массу, что делает его применение незаменимым в областях, где важны хорошие механические свойства изделий одновременно с их массой. На странице представлено описание данного металла: физические, химические свойства, области применения, марки и его сплавов, виды продукции.

Титан – химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Данный материал сочетает легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам.

Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа. Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства).

Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления. По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом.

Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Читайте также:  Отрезная машина по металлу: как выбрать дисковую пилу

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза – железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает. Модули упругости титана невелики и обнаруживают существенную анизотропию.

Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti – существенный его недостаток, т.к.

в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

Титан – парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила – его восприимчивость существенно увеличивается с температурой.

Физические и механические свойства

СвойствоТитан
Атомный номер 22
Атомная масса 47,00
Плотность при 20°С, г/cм3 4,505
Температура плавления, °С 1668
Температура кипения, °С 3260
Скрытая теплота плавления, Дж/г 358
Скрытая теплота испарения, кДж/г 8,97
Теплота плавления, кДж/моль 18,8
Теплота испарения, кДж/моль 422,6
Молярный объем, см³/моль 10,6
Удельная теплоемкость при 20°С, кДж/(кг·°С) 0,54
Удельная теплопроводность при 20°С, Вт/(м·К) 18,85
Коэффициент линейного термического расширения при 25°С, 10-6 м/мК 8,15
Удельное электросопротивление при 20°С, Ом·см·10-6 45
Модуль нормальной упругости, гПа 112
Модуль сдвига, гПа 41
Коэффициент Пуассона 0,32
Твердость, НВ 130…150
Цвет искры Ослепительно-белый длинный насыщенный пучок искр
Группа металлов Тугоплавкий, легкий металл

Химические свойства

СвойствоТитан
Ковалентный радиус: 132 пм
Радиус иона: (+4e) 68 (+2e) 94 пм
Электроотрицательность (по Полингу): 1,54
Электродный потенциал: – 1,63
Степени окисления: 2, 3, 4

Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 – 99,58-99,9%, ВТ1-00св – 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св.

В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо.

Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С.

Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку.

Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С.

Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки.

Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С.

Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий. Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1.

Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью.

Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С.

Титановый сплав ВТ3-1 относится к системе Ti – Al – Cr – Mo – Fe – Si. Он обычно подвергается изотермическому отжигу.

Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 – 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.

    Достоинства:

  • малая плотность (4500 кг/м3) способствует уменьшению массы выпускаемых изделий;
  • высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
  • необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
  • удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
    Недостатки:

  • высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
  • активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
  • трудности вовлечения в производство титановых отходов;
  • плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
  • высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
  • плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
  • большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.

Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах. По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии. Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях. Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж. Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести. Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении. Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.

Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика.

Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов.

Нитрид (TiN) применяется для покрытия инструментов.

Основными видами продукции, которые выпускает промышленность, являются листы и плиты, прутки и круги, титановые трубы, титановая проволока и нить. Вся перечисленная продукция применяется в областях, в которых предъявляются повышенные требования к массе изделий и одновременно к их коррозионной стойкости и прочностным характеристикам.

Источник: http://www.metotech.ru/titan-opisanie.htm

Применение металла титан в промышленности и строительстве

Совмещение в одном веществе прочности и легкости – параметр ценный настолько, что остальные качества и особенности материала могут совершенно игнорироваться. Титан дорог в производстве, стоек к температурам только в сверхчистом виде, сложен в использовании, но все это оказывается второстепенным по сравнению с комбинацией малого веса и высокой прочности.

Читайте также:  Особенности выбора электронной лазерной рулетки

Данная статья расскажет вам о применении титана в военной авиации, промышленности, медицине, авиастроении, для изготовления ювелирных изделий, о сплавах титана, их свойствах и применении в быту.

Область использования металла была бы значительно шире, если бы не высокая стоимость его получения. Из-за этого применяют титан лишь в тех областях, где использование столь дорогого вещества экономически оправдано. Обуславливает применение не только прочность и легкость, но и стойкость к коррозии, сравнимая со стойкостью благородных металлов и долговечности.

Свойства металла необыкновенно сильно зависят от чистоты, поэтому применение технического и чистого титана рассматриваются как 2 отдельных вопроса.

О том, благодаря каким свойствам титан так широко используется в промышленности, расскажет это видео:

Технический титан может содержать разнообразные примеси, не сказывающиеся на химических свойствах вещества, однако имеющих влияние на физические. Технический титан теряет такое ценное качество, как жаропрочность и способность работать при температурах выше 500–600 С. А вот коррозийная его стойкость никак не уменьшается.

  • Этим и обусловлено его применение – в химической промышленности и в любой другой области, где необходимо обеспечить стойкость изделий в агрессивных средах. Из титана изготавливают емкости для хранения, арматуру, части реакторов, трубопроводов и насосов, назначением которых является перемещение неорганических и органических кислот и оснований. Такими же свойствами в большинстве своем обладают и титановые сплавы.
  • Малый вес совместно с коррозийной стойкостью обеспечивает и другое применение – при изготовлении транспортной техники, в частности, железнодорожного транспорта. Использование титановых листов и прутков при изготовлении вагонов и поездов позволяет уменьшить массу составов, а, значит, уменьшить размеры букс и шеек, сделав тягу более эффективной.

В обыкновенных автомобилях из титана изготавливают системы отведения отработанных газов и витые пружины. В гоночных автомобилях титановые движущие узлы позволяют заметно облегчить машину и улучшить ее свойства.

  • Незаменим титан в производстве бронетанковой техники: вот где соединение прочности и легкости оказывается решающим.
  • Высокая коррозийная стойкость и легкость делает материал привлекательным и для военно-морского дела. Титан применяют при изготовлении тонкостенных труб и теплообменников, выхлопных глушителей на подводных лодках, клапанов, пропеллеров, элементов турбин и так далее.

Изделия из титана (фото)

Чистый металл

Чистый металл проявляет очень высокую жаропрочность, способность работать в условиях высокой нагрузки и высокой температуры. А, учитывая его малый вес, применение металла в ракето- и авиастроении оказывается очевидным.

  • Из металла и его сплавов изготавливают детали крепления, обшивку, части шасси, силовой набор и так далее. Кроме того, материал используется при конструировании авиационных двигателей, что позволяет снизить их вес на 10–25%.
  • Ракеты при прохождении через плотные слои атмосферы испытывают чудовищные нагрузки. Применение титана и его сплавов позволяет разрешить задачу статической выносливости аппарата, усталостной прочности и в какой-то мере ползучести.
  • Еще одно применение чистого титана – изготовление деталей электровакуумных приборов, рассчитанных на эксплуатацию в условиях перегрузок.
  • Незаменим металл в производстве криогенной техники: прочность титана с понижением температуры только увеличивается, но при этом сохраняется некоторая пластичность.
  • Титан является едва ли не самым биологически инертным веществом. Коммерчески чистый металл используют для изготовления всех видов внешних и внутренних протезов вплоть до сердечных клапанов. Титан совместим с биологической тканью и не вызвал ни единого случая аллергии. Кроме того, материал применяют для хирургических инструментов, инвалидных костылей, колясок и так далее.

Однако при всей своей стойкости к температурам и долговечности металл не используется при изготовлении подшипников, втулок и других деталей, где предполагается трение. Титан обладает низкими антифрикционными свойствами и с помощью добавок этот вопрос не решается.

Титан хорошо полируется, анодируется – цветное анодирование, поэтому часто применяется в художественных произведениях и в архитектуре. Примером может послужить памятник первому искусственному спутнику земли или памятник. Ю. Гагарину.

Про маркировку на изделиях из титана, инструкции по его применению и иные важные моменты использования металла в строительстве, расскажем ниже.

В видео ниже показан процесс андонирования титана:

Конечно, львиная доля титана используется в авиастроении и в транспортной промышленности, где особенно важно сочетание прочности и легкости. Однако и в строительстве материал применяется, и применялся бы шире, если бы не высокая стоимость.

Обшивка титаном

Эта технология распространена пока мало, но, например, в Японии титановые листы очень широко используют для отделки крыш и даже внутренних интерьеров. Доля материала, расходуемого в строительстве, значительно выше доли, используемой в авиасекторе.

Связано это как с прочностью такой облицовки, так и с ее удивительными декоративными возможностями. Методом анодного окисления на поверхности листа можно получить слой оксидов разной толщины. Цвет при этом изменяется. Изменяя время отжига и интенсивность, можно получить желтый, бирюзовый, синий, розовый, зеленый цвета.

При анодировании в атмосфере азота изготавливают листы со слоем нитрида титана. Таким образом, получают самые разнообразные оттенки золота. Эта технология используется при реставрации памятников архитектуры – восстановление церквей, например.

Далее будет рассмотрен такой способ применения титана как изготовление фальцевой кровли.

Фальцевые кровли

Этот вариант уже получил весьма широкое распространение. Но, правда, основой его служит не сам титан, а его сплав с цинком.

Сами по себе фальцевые кровли известны очень давно, но давно не пользовались популярностью. Однако сегодня благодаря моде на стили хай-так и техно появилась потребность в ломаных и сплайновых поверхностях, особенно переходящих в фасад здания. А такую возможность и предоставляет металлическая кровля.

Ее способность к формообразованию практически безгранична. А применение сплава цинк-титан обеспечивает и исключительную прочность, и самый необычный внешний вид. Хотя справедливости ради базовый матово-стальной цвет считается самым респектабельным.

Поскольку цинк-титан обладает вполне достойной ковкостью, из сплава изготавливают разнообразные сложные декоративные детали: коньки крыш, водостойкие отливы, карнизы и прочее.

Такая область применения титана как облицовка фасада рассмотрена кратко ниже.

При изготовлении облицовочных панелей также используется цинк-титан. Применяют панели и для облицовки фасадов, и для отделки интерьеров. Причина та же – комбинация прочности, исключительной легкости и декоративности.

Выпускаются панели самой разной формы – в виде ламелей, ромбов, модулей, чешуи и так далее. Самое интересное, это то, что панели могут быть не плоскими, а принимать едва ли не любые объемные формы. В результате такая отделка возможна на стенах и зданиях любой, самой немыслимой конфигурации.

Легкость изделия обуславливает и другое совершенно уникальное применение. Обычный вентилируемый фасад подразумевает закрепление плит и зазор между облицовкой и утеплителем. Однако легкие панели цинк-титана можно крепить на подвижные открывающиеся механизмы, образуя систему, наподобие жалюзи. Пластины по необходимости могут отклоняться от плоскости на угол в 90 градусов.

Титан обладает уникальным сочетанием прочности, легкости и коррозийной стойкости. Эти качества обуславливают его применение, несмотря на высокую стоимость материала.

О том, как сделать кольцо из титана, расскажет это видео:

Источник: http://stroyres.net/metallicheskie/vidyi/tsvetnyie/titan/primenenie-v-promyishlennosti-i-stroitelstve.html

Титан и его сплавы: свойства и сфера применения

Титан считается одним из наиболее распространенных элементов.

Сочетая коррозионную стойкость и прочность с низкой плотностью, он обладает целым рядом конструктивных преимуществ перед такими материалами, как например, сталь или алюминий.

Титан и его сплавы нашли применение в металлургии, военной промышленности, в электро- и радиотехнике, химической промышленности, судостроении и других сферах жизнедеятельности.

Свойства титана

В системе классификации элементов Менделеева Ti находится под номером 22. Одним из важнейших свойств титана и его сплавов является четырехвалентность. Температура плавления составляет +1168°С, кипения – 33300°С.

Существуют две разновидности титана с аналогичным химическим составом, но и разными свойствами, строением.

Низкотемпературная альфа-модификация, которая существует до температуры +882,5°С и высокотемпературная бета-модификация – устойчива до температуры плавления.

Титан и титановые сплавы относятся к парамагнитным материалам. При нагревании их восприимчивость к температуре снижается. Материал характеризуется высокими удельным электросопротивлением – 42·10-8-80·10-6 Ом·см. В условиях, когда температура опускается ниже 0,45К, металл превращается в проводник. Внешне он напоминает сталь.

По удельной теплоемкости и плотности титан находится между алюминием и железом. При этом его механическая прочность практически в 13 раза выше, чем у чистого железа и 6 раз больше, чем у алюминия. 

Марки титана и сплавов

Наиболее распространены титан и сплавы марок ВТ1-0, ВТ1-00св, ВТ1-00. Они относятся к категории технических. В состав данных марок не входят легирующие элементы. Поставляется титан в виде плит, листов, труб и прутков. Проволока чаще всего производится из материала марки ВТ1-00св.

Сегодня известно множество марок титанов и титановых сплавов, отличающихся по технологическим, механическим свойствам, химическому составу. Чаще всего в их составе содержаться такие элементы, как:

  • алюминий,
  • молибден,
  • ванадий, 
  • марганец,
  • хром,
  • олово,
  • кремний,
  • цирконий,
  • железо.

Титан марки BT5 и сплавы из него содержат до 5% алюминия, что наделяет их высокой прочностью. Материалы хорошо штампуются, куются, прокатываются и свариваются. Из них производятся прутки (круги), трубы, проволока, листы.

Титановые сплавы ВТ5-1 кроме алюминия содержат олово в размере 2-3% ,что улучшает их технологические характеристики.

Из таких материалов получают все виды полуфабрикатов – плиты, листы, поковки, профили, трубы, штамповку, проволоку. 

К хорошо деформируемым сплавам титана относят ОТ4 и ОТ4-1, содержащие алюминий и марганец. Данные материалы отличаются высокой технологичной пластичностью и свариваются любыми видами сварок. Титаны этих марок используются в производстве плит, лент, листов, полов, профилей, труб.

Прочный сплав ВТ20 содержит алюминий, цирконий, молибден и ванадий. Материал отличается высокой жаропрочностью.

Сплав титана ВТ3-1 содержит такие элементы, как Ti, Al, Cr, Mo, Fe, Si и, как правило, подвергается изотермическому отжигу, что наделяет его высокой пластичностью и термической стабильностью.

Этот сплав является наиболее освоенным в производстве. Из него изготавливаются поковки, штамповки, пруты, профили.

Сплавы титана ГОСТ 19807-91 содержат углерод и называются тугоплавкими карбидами. Их теплопроводность в 13 раз ниже показателя алюминия и в 4 раза – железа. 

Сфера применения титана

Сплавы на основе титана нашли широкое применение в металлургии, а том числе и в роли легирующего элемента в производстве жаростойких и нержавеющих сталей. Также Ti добавляют в медь, алюминий, никель с целью повышения прочности последних.

Двуокись титана применяется в производстве сварочных электродов, четыреххлористый Ti используется в военном деле для организации дымовых завес. В радиотехнике и электротехнике применяется порошкообразный титан в роли поглотителя газов.

В ряде случаев Ti является незаменимым в судостроении и промышленности – из него производятся детали, использующиеся для работы с агрессивными жидкостями, в коррозионно активных средах, при анодировании различных деталей.

Также титан используется в производстве элементов для гальванических ванн, гидрометаллургических аппаратов и многого другого.

1 Февраля 2017

Читайте также:  Сварочный полуавтомат аврора: характеристики и правила эксплуатации

Источник: https://www.etalonstal.ru/statii/titan-i-ego-splavy-svoystva-i-sfera-primeneniya/

Титан металл. Свойства титана. Применение титана

Титан — металл фей. По крайней мере, элемент назван в честь царицы этих мифических существ. Титания, как и все ее сородичи, отличилась воздушностью.

Летать феям позволяют не только крылья, но и малый вес. Титан тоже легок. Плотность у элемента самая малая среди металлов. На этом сходство с феями заканчивается и начинается чистая наука.

Химические и физические свойства титана

Титан – элемент серебристо-белого цвета, с выраженным блеском. В бликах металла можно разглядеть и розовый, и синий, и красный. Переливаться всеми цветами радуги – характерная особенность 22-го элемента таблицы Менделеева.

Его лучение всегда ярко, ведь титан устойчив к коррозии. От нее материал защищен оксидной пленкой. Она формируется на поверхности при стандартных температура.

В итоге, коррозия металлу не страшна ни на воздухе, ни в воде, ни в большинстве агрессивных сред, к примеру, царской водке. Так химики прозвали смесь концентрированных азотной и соляной кислот.

Плавится 22-ый элемент при 1 660-ти градусов Цельсия. Получается, титан – цветной металл тугоплавкой группы. Гореть материал начинает раньше, чем размягчаться.

Белое пламя появляется при 1 200-от градусов. Закипает вещество при 3 260-ти по шкале Цельсия. Плавление элемента делает его вязким. Приходится использовать специальные реагенты, препятствующие налипанию.

Если жидкая масса металла тягучая и клейкая, то в состоянии порошка титан взрывоопасен. Для срабатывания «бомбы» достаточно нагрева до 400-от градусов Цельсия. Принимая тепловую энергию, элемент плохо ее передает.

В качестве электропроводника титан тоже не используют. Зато, материал ценят за прочность. В сочетании с малой плотностью и весом, она пригождается во многих отраслях промышленности.

Химически титан довольно активен. Так, или иначе, металл взаимодействует с большинством элементов. Исключения: — инертные газы, литий, натрий, калий, магний, кальций и сера.

Столь малое количество безразличных титану веществ затрудняет процесс получения чистого элемента. Нелегко произвести и сплавы металлов титана. Однако, промышленники научились это делать. Слишком уж высока практическая польза смесей на основе 22-го вещества.

Применение титана

Сборка самолетов и ракет, — вот где в первую очередь пригождается титан. Металл купить необходимо, чтобы повысить жаростойкость и жаропрочность корпусных сплавов. Жаростойкость – сопротивление высоким температурам.

Они, к примеру, при разгоне ракеты в атмосфере неизбежны. Жаропрочность – сохранение в «огненных» обстоятельствах еще и большинства механических свойств сплава. То есть, с титаном эксплуатационные характеристики деталей не меняются в зависимости от условий внешней среды.

Пригождается и устойчивость 22-го металла к коррозии. Это свойство важно уже не только в деле производства машин. Элемент идет на колбы и прочую посуду для химических лабораторий, становится сырьем для ювелирных украшений.

Сырье не из дешевых. Но, во всех отраслях затраты окупаются сроком службы титановых изделий, их способностью сохранять первозданный вид.

Так, серия посуды питерской фирмы «Нева» «Металл Титан ПК» позволяет использовать при жарке металлические ложки. Тефлон бы они уничтожили, поцарапали. Титановому же покрытию нипочем нападки стали, алюминия.

Это, кстати, касается и украшений. Кольцо из серебра или золота просто поцарапать. Модели из титана остаются гладкими десятилетия. Поэтому 22-ый элемент начали рассматривать, как сырье для обручальных перстней.

Сковорода «Титан Металл» легка, как и посуда с тефлоном. 22-ый элемент лишь немногим тяжелее алюминия. Это вдохновило не только представителей легкой промышленности, но и специалистов автомобилестроения. Не секрет, что в машинах много алюминиевых деталей.

Они нужны для снижения массы транспорта. Но, титан прочнее. Касаемо представительских машин автомобилестроение уже почти полностью перешло на использование 22-го металла.

Детали из титана и его сплавов снижают массу двигателя внутреннего сгорания на 30%. Облегчается и корпус, правда, растет цена. Алюминий, все же, дешевле.

Фирма «Нева Металл Титан», отзывы о которой оставляют, как правило, со знаком плюс, производит посуду. Автомобильные бренды используют титан для машин. Ювелиры придают элементу форму колец, сережек и браслетов.  В этой череде перечислений не хватает медицинских компаний.

22-ый металл – сырье для протезов и хирургических инструментов. Продукция почти не имеет пор, поэтому легко стерилизуется. К тому же, титан, будучи легким, выдерживает колоссальные нагрузки. Что еще нужно, ели, к примеру, вместо коленных связок ставится чужеродная деталь?

Отсутствие в материале пор ценится успешными рестораторами. Чистота скальпелей хирурга важна. Но, важна и чистота рабочих поверхностей поваров. Чтобы пища была безопасной, ее разделывают и пропаривают на титановых столах.

Они не царапаются, легко моются. Заведения среднего уровня, как правило, пользуются стальной утварью, но, она уступают в качестве. Поэтому, в ресторанах с Мишленовскими звездами оборудование титановое.

Добыча титана

Элемент входит в 20-ку наиболее распространенных на Земле, находясь ровно посередине рейтинга. По массе коры планеты содержание титана равно 0,57%. На литр морской воды 24-го металла приходится 0,001 миллиграмма. В сланцах и глинах элемента содержится 4,5 килограмма на тонну.

В кислых породах, то есть богатых кремнеземом, на титан приходятся 2,3 килограмма с каждой тысячи. В основных залежах, образовавшихся из магмы, 22-го металла около 9-ти кило на тонну. Меньше всего титана скрывается в ультраосновных породах с 30-процентным содержанием кремнезема – 300 граммов на 1 000 килограммов сырья.

Не смотря на распространенность в природе, чистый титан в ней не встречается. Материалом для получения 100-процентного металла стал его йодит. Термическое разложение вещества провели Аркель и Де Бур. Это голландские химики. Эксперимент удался в 1925-ом году. К 1950-ым запустили массовое производство.

Современники, как правило, добывают титан из его диоксида. Это минерал, называемый рутилом. В нем наименьшее количество сторонних примесей. Походят, так же титанит и ильменит.

При переработке ильменитовых руд остается шлак. Он-то и служит материалом для получения 22-го элемента. На выходе он порист. Приходится вести вторичную переплавку в вакуумных печах с добавлением лигатуры.

Если ведется работа с диоксидом титана, к нему примешивают магний и хлор. Смесь нагревают в вакуумных печах. Температуру поднимают до тех пор, пока все лишние элементы не испарятся. На дне емкостей остается чистый титан. Метод назван магниетермическим.

Отработан и гидридно-кальциевый метод. Он основан на электролизе. Ток высокой силы позволяет разделить гидрид металла на титан и водород. Продолжает применяться и йодитный способ добычи элемента, отработанный в 1925-ом году. Однако, в 21-ом веке он наиболее трудоемкий и дорогой, поэтому начинает забываться.

Цена титана

На металл титан цена устанавливается за килограмм. В начале 2016-го, это около 18-ти долларов США. Мировой рынок 22-го элемента за последний год достиг 7 000 000 тонн. Крупнейшие поставщики – Россия и Китай.

Это связано с разведанными в них и пригодными для разработки запасами. Во втором полугодии 2015-го спрос на титановые слитки и листы начал снижаться.

Реализуют металл и в виде проволоки, различных деталей, к примеру, труб. Они гораздо дешевле биржевых расценок. Но, нужно учитывать, что в слитках идет чистый титан, а в изделиях использованы сплавы на его основе.

Содержание 22-го элемента в них, порой, не превышает 20%. Примерно настолько же в этом году эксперты прогнозируют рост стоимости металла. Он нужен в оборонном комплексе, который многие страны наращивают в связи с непростой ситуацией на мировой политической арене.

Источник: https://tvoi-uvelirr.ru/titan-metall-svojstva-titana-primenenie-titana/

Металл титан. Титановые сплавы. Сплавы титана. Титан и его сплавы. Применение титановых сплавов. | мтомд.инфо

Титан — серебристо-белый легкий металл с плотностью 4,5 г/см3. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680oС.

Чистый иодидный титан, в котором сумма примесей составляют 0,05…0,1 %, имеет модуль упругости 112 000 МПа, предел прочности около 300 МПа, относительное удлинение 65%. Наличие примесей сильно влияет на свойства.

Для технического титана ВТ1, с суммарным содержанием примесей 0,8 %, предел прочности составляет 650 МПа, а относительное удлинение – 20 %.

При температуре 882oС титан претерпевает полиморфное превращение, α–титан с гексагональной решеткой переходит в β – титан с объемно-центрированной кубической решеткой. Наличие полиморфизма у титана создает предпосылки для улучшения свойств титановых сплавов с помощью термической обработки.

Титан имеет низкую теплопроводность.

При нормальной температуре обладает высокой коррозионной стойкостью в атмосфере, в воде, в органических и неорганических кислотах ( не стоек в плавиковой, крепких серной и азотной кислотах), благодаря тому, что на воздухе быстро покрывается защитной пленкой плотных оксидов. При нагреве выше 500oС становится очень активным элементом. Он либо растворяет почти все соприкасающиеся и ним вещества, либо образует с ними химические соединения.

Титановые сплавы имеют ряд преимуществ по сравнению с другими:

  • сочетание высокой прочности (σЕ = 800..1000 МПа) с хорошей пластичностью (δ = 12..25%);
  • малая плотность, обеспечивающая высокую удельную прочность;
  • хорошая жаропрочность, до 600…700oС;
  • высокая коррозионная стойкость в агрессивных средах.

В результате легирования титановых сплавов можно получить нужный комплекс свойств. Легирующие элементы, входящие в состав промышленных титановых сплавов, образуют с титаном твердые растворы замещения и изменяют температуру аллотропического превращения.

Влияние легирующих элементов на полиморфизм титана

Элементы, повышающие температуру превращения, способствуют стабилизации α-твердого раствора и называются α-стабилизаторами, это – алюминий, кислород, азот, углерод.

Элементы, понижающие температуру превращения, способствуют стабилизации β–твердого раствора и называются β–стабилизаторами, это – молибден, ванадий, хром, железо.

Кроме α– и β–стабилизаторов различают нейтральные упрочнители: олово, цирконий, гафний.

В соответствии с влиянием легирующих элементов титановые сплавы при нормальной температуре могут иметь структуру α или α+β.

Сплавы на основе титана можно подвергать всем видам термической обработки, химико-термической и термомеханической обработке. Упрочнение титановых сплавов достигается легированием, наклепом, термической обработкой.

Часто титановые сплавы легируют алюминием, он увеличивает прочность и жаропрочность, уменьшает вредное влияние водорода, увеличивает термическую стабильность. Для повышения износостойкости титановых сплавов их подвергают цементации или азотированию.

Основным недостатком титановых сплавов является плохая обрабатываемость режущим инструментом.

По способу производства деталей различаются деформируемые (ВТ 9, ВТ 18) и литейные (ВТ 21Л, ВТ 31Л) сплавы.

Применение титановых сплавов:

  • авиация и ракетостроение (корпуса двигателей, баллоны для газов, сопла, диски, детали крепежа);
  • химическая промышленность (компрессоры, клапаны, вентили для агрессивных жидкостей);
  • оборудование для обработки ядерного топлива;
  • морское и речное судостроение (гребные винты, обшивка морских судов, подводных лодок);
  • криогенная техника (высокая ударная вязкость сохраняется до –253oС).

Источник: http://www.mtomd.info/archives/1683

Ссылка на основную публикацию
Adblock
detector