Как найти скорость в трубопроводе зная диаметр

Диаметр трубопроводов, скорость течения и расход теплоносителя.

В системе водяного отопления особенно часто у многих встает вопрос: Как вычислить диаметр трубопровода, по которому будет бежать теплоноситель (вода).

Данный материал предназначен понять, что такое диаметр, расход и скорость течения. И какие связи между ними. В других материалах будет подробный расчет диаметра для отопления.

Для того чтобы вычислить диаметр необходимо знать:

1. Расход теплоносителя (воды) в трубе.
2. Сопротивление движению теплоносителя (воды) в трубе определенной длины.

Вот необходимые формулы, которые нужно знать:

Как найти скорость в трубопроводе зная диаметр

S-Площадь сечения м2 внутреннего просвета трубы
π-3,14-константа – отношение длины окружности к ее диаметру.
r-Радиус окружности, равный половине диаметра, м
Q-расход воды м3/с
D-Внутренний диаметр трубы, м
V-скорость течения теплоносителя, м/с

Сопротивление движению теплоносителя.

Любой движущийся внутри трубы теплоноситель, стремиться к тому, чтобы прекратить свое движение. Та сила, которая приложена к тому, чтобы остановить движение теплоносителя – является силой сопротивления.

Это сопротивление, называют – потерей напора. То есть движущийся теплоноситель по трубе определенной длины теряет напор.

Напор измеряется в метрах или в давлениях (Па). Для удобства в расчетах необходимо использовать метры.

Извиняйте, но я привык указывать потерю напора в метрах. 10 метров водного столба создают 0,1 МПа.

  • Для того, чтобы глубже понять смысл данного материла, рекомендую проследить за решением задачи.
  • Задача 1.

В трубе с внутренним диаметром 12 мм течет вода, со скоростью 1м/с. Найти расход.

Решение: Необходимо воспользоваться вышеуказанными формулами:

1. Находим сечение
2. Находим расход
  1. Дано:
  2. S=3.14•0,0122/4=0,000113 м2
  3. Q=0,000113•1=0,000113 м3/с = 0,4 м3/ч.
  4. Ответ: 0,4 м3/ч.
  5. Задача 2.

Как найти скорость в трубопроводе зная диаметр

Имеется насос, создающий постоянный расход 40 литров в минуту. К насосу подключена труба протяженностью 1 метр. Найти внутренний диаметр трубы при скорости движения воды 6 м/с.

Конечно, в реальности насосы не выдают постоянный расход и не выдают бесконечно большой напор. Поэтому по условию задачи мы условно приняли, что насос качает строго 40 литров в минуту, а напор насоса бесконечно большой.

Ниже я поясню все нюансы подбора диаметра.

  • Решение.
  • Дано:
  • Q=40л/мин=0,000666666 м3/с
  • Из выше указанных формул получил такую формулу.

Как найти скорость в трубопроводе зная диаметр

Ответ: 12мм

К сожалению, по такой формуле находить диаметр трубы не разумно и вот почему!

Каждый насос имеет вот такую расходно-сопротивляемую характеристику:

Как найти скорость в трубопроводе зная диаметр

Это означает, что наш расход в конце трубы будет зависеть от потери напора, которое создается самой трубой.

Чем длиннее труба, тем больше потеря напора.
Чем меньше диаметр, тем больше потеря напора.
Чем выше скорость теплоносителя в трубе, тем больше потеря напора.
Углы, повороты, тройники, заужения и расширение трубы, тоже увеличивают потерю напора.

Такой характеристикой обладают на самом деле не насосы, а жидкости, которые подчиняются гидравлическим законам. Эти законы распространяются не только на насосы, но и на все трубы по которым течет жидкость.

Даже если вода будет истекать из наполненного бака, там тоже будет присутствовать такая вот расходно-сопротивляемая характеристика.

  1. Более детально потеря напора по длине трубопровода рассматривается в этой статье:
  2. Потеря напора по длине трубопровода.

  3. А теперь рассмотрим задачу из реального примера.
  4. Хочу сразу Вас уведомить, что для следующей задачи были использованы эти материалы:
  5. Профессиональный расчет диаметра трубы для водоснабжения.
  6. Задача 2:

Как найти скорость в трубопроводе зная диаметр

Стальная (железная) труба проложена длиной 376 метров с внутренним диаметром 100 мм, по длине трубы имеются 21 отводов (угловых поворотов 90°С). Труба проложена с перепадом 17м. То есть труба относительно горизонта идет вверх на высоту 17 метров. Характеристики насоса: Максимальный напор 50 метров (0,5МПа), максимальный расход 90м3/ч. Температура воды 16°С. Найти максимально возможный расход в конце трубы.

Дано:

D=100 мм = 0,1м
L=376м
Геометрическая высота=17м
Отводов 21 шт
Напор насоса= 0,5 МПа (50 метров водного столба)
Максимальный расход=90м3/ч
Температура воды 16°С.
Труба стальная железная

Найти максимальный расход = ?

Решение на видео:

  • Купить программу
  • Для решения необходимо знать график насосов: Зависимость расхода от напора.

Я выбрал визуально похожий график всех насосов, от реального может отличаться на 10-20%. Для более точного расчета необходим график насоса, который указан в паспорте насоса.

Как найти скорость в трубопроводе зная диаметр

В нашем случае будет такой график:

Как найти скорость в трубопроводе зная диаметр

Смотрите, прерывистой линией по горизонту обозначил 17 метров и на пересечение по кривой получаю максимально возможный расход: Qmax.

По графику я могу смело утверждать, что на перепаде высоты, мы теряем примерно: 14 м3/час. (90-Qmax=14 м3/ч).

  1. Не существует прямой формулы, которая дает прямой расчет нахождения расхода, а если и существует, то она имеет ступенчатый характер и некоторую логику, которая способна Вас запутать – окончательно.
  2. Ступенчатый расчет получается потому, что в формуле существует квадратичная особенность потерь напора в динамике (движение).
  3. Поэтому решаем задачу ступенчато.
  4. Поскольку мы имеем интервал расходов от 0 до 76 м3/час, то мне хочется проверить потерю напора при расходе равным: 45 м3/ч.
  5. Находим скорость движения воды
  • Q=45 м3/ч = 0,0125 м3/сек.
  • V = (4•0,0125)/(3,14•0,1•0,1)=1,59 м/с
  • Находим число рейнольдса

Как найти скорость в трубопроводе зная диаметр

ν=1,16•10-6=0,00000116. Взято из таблици. Для воды при температуре 16°С.

Re=(V•D)/ν=(1,59•0,1)/0,00000116=137069

Δэ=0,1мм=0,0001м. Взято из таблицы, для стальной (железной) трубы.

  1. Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.
  2. У меня попадает на вторую область при условии
  3. 10•D/Δэ < Re < 560•D/Δэ
  4. 10•0,1/0,0001 < Re < 560•0,1/0,0001
  5. 10 000 < Re < 560 000

Как найти скорость в трубопроводе зная диаметр

  • λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/137069)0,25=0,0216
  • Далее завершаем формулой:
  • h=λ•(L•V2)/(D•2•g)= 0,0216•(376•1,59•1,59)/(0,1•2•9,81)=10,46 м.
  • Как видите, потеря составляет 10 метров. Далее определяем Q1, смотри график:
  • Теперь делаем оригинальный расчет при расходе равный 64м3/час
  • Q=64 м3/ч = 0,018 м3/сек.
  • V = (4•0,018)/(3,14•0,1•0,1)=2,29 м/с
  • Re=(V•D)/ν=(2,29•0,1)/0,00000116=197414
  • λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/197414)0,25=0,021
  • h=λ•(L•V2)/(D•2•g)= 0,021•(376•2,29 •2,29)/(0,1•2•9,81)=21,1 м.
  • Отмечаем на графике:
  • Qmax находится на пересечении кривой между Q1 и Q2 (Ровно середина кривой).

Ответ: Максимальный расход равен 54 м3/ч. Но это мы решили без сопротивления на поворотах.

  1. Для проверки проверим:
  2. Q=54 м3/ч = 0,015 м3/сек.
  3. V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с
  4. Re=(V•D)/ν=(1,91•0,1)/0,00000116=164655
  5. λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/164655)0,25=0,0213
  6. h=λ•(L•V2)/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.
  7. Итог: Мы попали на Нпот=14,89=15м.
  8. А теперь посчитаем сопротивление на поворотах:
  9. Формула по нахождению напора на местном гидравлическом сопротивление:
  10. Подробней об этом в разделе: Местные гидравлические сопротивления
h-потеря напора здесь она измеряется в метрах.
ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с2

ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм. Для больших диаметров он уменьшается. Это связано с тем, что влияние скорости движения воды по отношению к повороту уменьшается.

Смотрел в разных книгах по местным сопротивлениям для поворота трубы и отводов. И приходил часто к расчетам, что один сильный резкий поворот равен коэффициенту единице. Резким поворотом считается, если радиус поворота по значению не превышает диаметр. Если радиус превышает диаметр в 2-3 раза, то значение коэффициента значительно уменьшается.

  • Подробней об этом в разделе: Местные гидравлические сопротивления
  • Возьмем ζ = 1.
  • Скорость 1,91 м/с
  • h=ζ•(V2)/2•9,81=(1•1,912)/( 2•9,81)=0,18 м.
  • Это значение умножаем на количество отводов и получаем 0,18•21=3,78 м.
  • Ответ: при скорости движения 1,91 м/с, получаем потерю напора 3,78 метров.
  • Давайте теперь решим целиком задачку с отводами.

При расходе 45 м3/час получили потерю напора по длине: 10,46 м. Смотри выше.

При этой скорости (2,29 м/с) находим сопротивление на поворотах:

h=ζ•(V2)/2•9,81=(1•2,292)/(2•9,81)=0,27 м. умножаем на 21 = 5,67 м.

  1. Складываем потери напора: 10,46+5,67=16,13м.
  2. Отмечаем на графике:
  3. Решаем тоже самое только для расхода в 55 м3/ч
  4. Q=55 м3/ч = 0,015 м3/сек.
  5. V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с
  6. Re=(V*D)/ν=(1,91 •0,1)/0,00000116=164655
  7. λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/164655)0,25=0,0213
  8. h=λ•(L•V2)/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.

h=ζ•(V2)/2•9,81=(1•1,912)/( 2•9,81)=0,18 м. умножаем на 21 = 3,78 м.

  • Складываем потери: 14,89+3,78=18,67 м
  • Рисуем на графике:

Ответ: Максимальный расход=52 м3/час. Без отводов Qmax=54 м3/час.

  1. Чтобы в ручную не считать всю математику я приготовил специальную программу:
  2. Скачать калькулятор расчетов гидравлического сопротивления.

Теперь я думаю вам понятно как происходит сопротивление движению потока. Если не понятно, то я готов услышать ваши коментарии по данной статье. Пишите коментарии.

В итоге, на размер диаметра влияют:

1. Сопротивление, создаваемое трубой с поворотами
2. Необходимый расход
3. Влияние насоса его расходно-напорной характеристикой
Читайте также:  Особенности выбора набора накидных гаечных ключей с трещоткой

Если расход в конце трубы меньше, то необходимо: Либо увеличить диаметр, либо увеличить мощность насоса. Увеличивать мощность насоса не экономично.

Вычисляем диаметр трубы для отопления

Данная статья является частью системы: Конструктор водяного отопления

Скорость воды в трубопроводе: факторы и расчеты

Сооружая автономную водопроводную сеть для частного дома, необходимо задуматься о достаточно большом количестве параметров, которые сделают водопровод сетью, работающей долгое время и не требующей больших затрат на ее обслуживание. Один из важных факторов – скорость движения воды в трубопроводах водоснабжения.

Почему скорость должна быть определенного значения

Как найти скорость в трубопроводе зная диаметрСкорость воды в трубах учитывают при выборе материала и диаметра трубопровода

Если скорость недостаточная, на стенках труб будут осаждаться нерастворенные частицы, которые поступают с водой из скважины или колодца. Это приведет к заиливанию и уменьшению проходного сечения. В результате снизится напор и производительность всей системы в целом.

Если скорость воды в водопроводе большая, это приводит к увеличению давления перекачиваемой жидкости на стенки труб и их стыки. Велика вероятность, что в каком-то месте трубопровода со временем произойдет протечка.

Типовые значения скорости

Существуют рекомендованные значения скорости водяного потока в трубах водоснабжения, которые зависят от материала, из которого водопроводные трубы изготовлены, новые они или уже были в эксплуатации. Вот несколько зависимостей, которые помогут сделать правильный выбор.

Скорость в пластиковой трубе м/сек Скорость в стальной трубе, м/сек
новая старая
50 22 0,7 0,062
100 11 0,74 0,068
200 7,6 0,82 0,076

Скорость напрямую зависит и от диаметра труб. При этом любые жидкости, движущиеся по трубам, подчиняются законам физики. В водопроводе эти законы стремятся остановить движение воды. Сила, которая к этому прикладывается, называется силой сопротивления. Она ведет к потерям напора, а соответственно и к снижению скорости.

Обычно формулу скорости потока воды в трубопроводах, как таковую, не применяют нигде. Потому что нет смысла рассчитывать то, что уже доказано и находится в свободном доступе в таблицах. Ее принимают, как стандартную рекомендованную величину.

Сам параметр скорости потока воды в трубопроводах применяют для расчета нескольких характеристик водопроводной сети. К примеру, при расчете расхода воды или выбора диаметра труб.

Под водопроводом надо понимать сети питьевой воды, горячего водоснабжения и противопожарной системы.

Примеры расчетов

Как найти скорость в трубопроводе зная диаметрЧаще с помощью скорости рассчитывают расход воды или диаметр труб. Для этого используют формулу:

W= V×S, где W – расход, V – скорость, S – площадь сечения выбранных труб.

По одной из таблиц выбирается скорость движения воды. Если это пожарный водопровод, в нем данный параметр должен быть в пределах 3 м/с. Достаточно большое значение, но для водопровода этого типа величина усредненная, бывает и больше.

К примеру, надо рассчитать сечение трубы. Для этого дополнительно нужно определиться, сколько воды будет расходоваться через спринклеры или дренчеры противопожарной системы. Это также табличная величина, зависящая от защищаемой площади здания или сооружения. Пусть это будет пожарная система в одну струю, в которой обычно расход составляет 3,5 л/сек или 0,0035 м³/час.

  • Зная все требуемые параметры водопровода, можно рассчитать сечение труб, которые будут монтироваться в сеть:
  • S=W/V=0,0035:3 = 0,0012 м².
  • Зная сечение трубы, можно подсчитать ее диаметр. Формула площади такова: S=πD²/4, отсюда формула диаметра:

D=√4S/π=√(4×0,0012:3,14)=0,0038 м или 38 мм. Такого значения диаметра труб не существует, поэтому надо выбрать стандартное большее — 40 мм.

Это самый простой пример. В реальности большинство водопроводных систем – это сложные схемы, в которых присутствуют отводы, подсоединяемые участки, установленная запорная арматура и прочие препятствия, которые снижают быстроту движения воды в водопроводе.

При этом во многих сетях установлены насосные станции, которые формируют производительность и напор.

Нередко в систему устанавливаются насколько насосных агрегатов, которые работают попеременно: по два, по три, по одному, в разных последовательностях включения и отключения.

В таких случаях расчет проводят ступенчато, для каждого участка по отдельности. При этом обязательно учитываются дополнительные коэффициенты, которые нивелируют полученные значения, а также потери напора на фитингах и в местах установки запорной арматуры.

Скорость потока

Как найти скорость в трубопроводе зная диаметрСкорость воды в трубе имеет два значения: у стенок она равна нулю, у оси — максимальный параметр. Чем дальше от оси, тем слабее движется вода.

Если рассматривать цилиндр, по которому движется жидкость, как воображаемую модель, можно сказать, что на воду внутри трубы не будут действовать никакие силы. Но в реальности все не так. Первая сила, которая действует на водяной поток, — сила трения о внутренние стенки трубопровода. Она уменьшается с отдалением от стенок.

Вторая сила – нагнетающая, действующая от насоса в направлении движении потока. Если этот параметр всегда неизменный, течение жидкости внутри трубы происходит ламинарно. Скорость остается неизменной, у стенок она равна нулю. Это идеальная ситуация.

На практике так случается редко. Факторов для этого много, к примеру, включение и отключение насоса, засорение фильтра и так далее. В таком случае у стенок трубопроводов скорость изменяется резко: то больше, то меньше с иногда огромной разницей. В остальной части эта характеристика изменяется меньше.

Многие интернет-порталы предлагают калькуляторы, с помощью которых можно рассчитать скорость потока жидкости, проходящей через цилиндр. Для этого потребуется всего лишь два параметра:

  • внутренний диаметр трубы в мм;
  • производительность водопровода, а точнее, объем жидкости, проходящей через трубу за определенный промежуток времени (м³/час).

Но в таких калькуляторах не учитывается материал, из которого трубы изготовлены, а также наличие или отсутствие фитингов, дополнительных контуров и запорной арматуры. Эти расчетные сервисы можно взять за основу, но точного значения от них ждать не стоит.

Решая вопрос, связанный со скоростью перемещения водного потока внутри водопроводной сети, необходимо четко определиться со сложностью системы, производительностью насосных станций и видами используемых труб. Проще всего – подобрать это значение по таблице, в которой показатели давно рассчитаны и гарантированно достоверны.

Гидравлический расчет трубопроводов водоснабжения

Расчет трубопроводов водоснабжения подразумевает определение диаметра трубы и удельного гидравлического сопротивления на единицу длины. Подобные расчеты могут быть выполнены на базе гидравлических таблиц, формул, а также с помощью онлайн-программы расчета на нашем сайте.

https://www.wildberries.ru/catalog/41042540/detail.aspx спирулина consumed таблетки. . Предлагаем тесты фипи с доставкой.

Расчет трубопроводов водоснабжения онлайн

Наш онлайн-калькулятор для расчета трубопроводов позволяет подобрать диаметр трубы как по расходу и скорости движения жидкости, так и исходя из холодильной мощности установки (в этом случае расход определяется автоматически).

Для удобства пользователей в большинстве случаев приводится два соседних диаметра трубы, которые могут подойти под указанный расход.

Кроме того, программа сразу рассчитывает фактическую скорость движения жидкости и потери давления на 1 метр трубы – в линейных единицах (миллиметрах столба данной жидкости; в случае воды – миллиметрах водяного столба) и в Паскалях. Потери рассчитаны исходя из турбулентного режима движения жидкости.

Как рассчитать диаметр трубопровода по расходу и скорости

Чтобы определить диаметр трубопровода, нужно знать тип и расход жидкости, который будет через него прокачиваться и ориентировочную скорость её движения. Рекомендуемый диапазон скоростей составляет 1-2,5м/с, причем меньшее значение следует принимать для малых трубопроводов (диаметром до 50мм), а большее значение – для больших.

Формула расчета диаметра водопроводной трубы:

( mathbf{D = sqrt{ 4 · G / (π · v)}} )​, где

  • D – диаметр водопроводной трубы, мм
  • G – расход жидкости, м3/с
  • v – скорость движения жидкости в трубе, м/с.

После подстановки плотности, перевода D в мм и проведения вычислений данная формула примет следующий вид:

  • ​( mathbf{D = 1,13 · sqrt{ G [м3/с] / v}} )​ 
  • ​( mathbf{D = 35,7 · sqrt{ G [л/с] / v}} )​ 

Наконец, оценочный расчет диаметра труб проводят для v = 1,5 м/с, и тогда формула примет ещё более простой вид:

  • ( mathbf{D = 0,92 · sqrt{ G [м3/с]}} )
  • ( mathbf{D = 29 · sqrt{ G [л/с]}} )

Как найти скорость в трубопроводе зная диаметр

Как рассчитать диаметр трубопровода, зная холодильную или тепловую мощность системы

На практике часто возникает задача подобрать трубу, зная холодильную или тепловую мощность системы. Например, по холодильной мощности чиллера или по мощности драйкулера, предназначенного для охлаждения водяного конденсата.

Такой расчет выполняется в два этапа. Сначала по заданной мощности и температурному графику теплоносителя определяется его расход, а потом по расходу и скорости рассчитывается необходимый диаметр трубы.

Читайте также:  Силиконовая лента для труб от протечек

G = Q / [ c · ρ · (TГ – TХ) ], где

  • G – расход жидкости, м3/с
  • Q – холодильная или тепловая мощность установки, кВт
  • с – теплоемкость жидкости, кДж/(кг·°С)
    • с = 4.2 кДж/(кг·°С) – для чистой воды
    • с = 3.5 кДж/(кг·°С) – для 40% раствора этиленгликоля в воде
  • ρ – плотность жидкости, кг/м3
    • ρ = 1000 кг/м3 – для чистой воды
    • ρ = 1070 кг/м3 – для 40% раствора этиленгликоля в воде
  • ТГ и ТХ – температуры горячего и холодного потоков теплоносителя, °С

Для систем холодоснабжения со стандартным перепадом температур между теплым и холодным потоком 5°С формула примет вид:

  • G = Q/21 – для чистой воды при ΔT = 5°С
  • G = Q/18.7 – для 40% гликоля при ΔT = 5°С
  • Чтобы определить диаметр трубы по мощности системы нужно общую формулу для G подставить в общую формулу для D. Получим:
  • [ mathbf{D = sqrt{ (4 · Q / (π · v · c · ρ · (T_Г – T_Х))}} ]
  • В подавляющем большинстве систем холодоснабжения применяется вода или 40% раствор гликоля в воде со стандартным перепадом температур между теплым и холодным потоком 5°С, а скорость движения жидкости принимается порядка 1,5м/с. В этом случае формула принимает гораздо более простой вид:
  • ( mathbf{D = 6,36 ·sqrt Q} )– для чистой воды
  • ( mathbf{D = 6,73 ·sqrt Q} )– для 40% раствора этиленгликоля в воде

Например, для системы холодоснабжения мощностью 700кВт на 40% гликоле диаметр магистральной трубы составит

( D = 6,73 ·sqrt Q= 6,73 · sqrt{ 700 } = 178 )мм. Ближайший больший трубопровод имеет диаметр 200мм.

Выбор диаметра трубопровода

Расчет диаметра трубопровода даёт точное значение. Но на практике трубы выпускаются с типовыми диаметрами (типоразмерами, стандартные диаметры труб). Поэтому «в жизнь» идет ближайший больший диаметр трубы из ряда стандартных диаметров.

  1. Таблица 1. Стандартный ряд диаметров трубопроводов, толщина стенок
  2. После того, как выбран стандартный диаметр трубы определяют актуальную скорость жидкости в трубе по формуле:
  3. v = G / S, где
  • G – расход жидкости, м3/с
  • S – площадь сечения трубопровода, м2 (для круглых труб S = πD2/4)

После подстановки площади и вычисления констант, для круглых труб получим:

  • v = 1,27 · G / D2 (G в м3/с, D в метрах)
  • v = 1270 · G / D2 (G в л/с, D в мм)

Полученная скорость участвует в гидравлическом расчете трубопроводов.

Как найти скорость воды в трубе? – Энциклопедия воды – все, что нужно знать

Диаметр трубопроводов, скорость течения и расход теплоносителя.

Данный материал предназначен понять, что такое диаметр, расход и скорость течения. И какие связи между ними. В других материалах будет подробный расчет диаметра для отопления.

Для того чтобы вычислить диаметр необходимо знать:

1. Расход теплоносителя (воды) в трубе. 2. Сопротивление движению теплоносителя (воды) в трубе определенной длины.

Вот необходимые формулы, которые нужно знать:

S-Площадь сечения м 2 внутреннего просвета трубы π-3,14-константа – отношение длины окружности к ее диаметру. r-Радиус окружности, равный половине диаметра, м Q-расход воды м 3 /с D-Внутренний диаметр трубы, м V-скорость течения теплоносителя, м/с

Сопротивление движению теплоносителя.

Любой движущийся внутри трубы теплоноситель, стремиться к тому, чтобы прекратить свое движение. Та сила, которая приложена к тому, чтобы остановить движение теплоносителя – является силой сопротивления.

Это сопротивление, называют – потерей напора. То есть движущийся теплоноситель по трубе определенной длины теряет напор.

Напор измеряется в метрах или в давлениях (Па). Для удобства в расчетах необходимо использовать метры.

Для того, чтобы глубже понять смысл данного материла, рекомендую проследить за решением задачи.

В трубе с внутренним диаметром 12 мм течет вода, со скоростью 1м/с. Найти расход.

Решение:

Необходимо воспользоваться вышеуказанными формулами:

1. Находим сечение 2. Находим расход

S=3.14•0,012 2 /4=0,000113 м 2

Q=0,000113•1=0,000113 м 3 /с = 0,4 м 3 /ч.

Имеется насос, создающий постоянный расход 40 литров в минуту. К насосу подключена труба протяженностью 1 метр. Найти внутренний диаметр трубы при скорости движения воды 6 м/с.

  • Q=40л/мин=0,000666666 м 3 /с
  • Из выше указанных формул получил такую формулу.
  • Каждый насос имеет вот такую расходно-сопротивляемую характеристику:
  • Это означает, что наш расход в конце трубы будет зависеть от потери напора, которое создается самой трубой.
Чем длиннее труба, тем больше потеря напора. Чем меньше диаметр, тем больше потеря напора. Чем выше скорость теплоносителя в трубе, тем больше потеря напора. Углы, повороты, тройники, заужения и расширение трубы, тоже увеличивают потерю напора.

Более детально потеря напора по длине трубопровода рассматривается в этой статье:

  Трубы НКТ – виды насосно-компрессорных труб и их применение

А теперь рассмотрим задачу из реального примера.

Стальная (железная) труба проложена длиной 376 метров с внутренним диаметром 100 мм, по длине трубы имеются 21 отводов (угловых поворотов 90°С). Труба проложена с перепадом 17м.

То есть труба относительно горизонта идет вверх на высоту 17 метров. Характеристики насоса: Максимальный напор 50 метров (0,5МПа), максимальный расход 90м 3 /ч. Температура воды 16°С.

Найти максимально возможный расход в конце трубы.

Сила тяжести

Гравитация — одна из четырех сил природы. Мощь гравитационной силы между двумя объектами зависит от массы этих объектов. Чем массивнее объекты, тем сильнее гравитационное притяжение.

Когда выливается вода из контейнера, гравитация Земли притягивает воду к земной поверхности. Можно наблюдать тот же самый эффект, если на разных высотах разместить два ведра воды и соединить их трубкой.

Достаточно задать ход жидкости в трубке из одного ведра в другой, после чего сработает сила гравитации, и процесс перелива продолжится самопроизвольно. Гравитация, приложенные силы и атмосферное давление являются статическими факторами, которые в равной степени относятся к жидкостям, находящимся в покое или в движении.

Силы инерции и трения являются динамическими факторами, которые действуют только на жидкости в движении. Математическая сумма силы тяжести, приложенной силы и атмосферного давления, представляет собой статическое давление, полученное в любой зоне жидкости и в любой момент времени.

Примеры расчетов

Чаще с помощью скорости рассчитывают расход воды или диаметр труб. Для этого используют формулу:

W= V×S, где W – расход, V – скорость, S – площадь сечения выбранных труб.

По одной из таблиц выбирается скорость движения воды. Если это пожарный водопровод, в нем данный параметр должен быть в пределах 3 м/с. Достаточно большое значение, но для водопровода этого типа величина усредненная, бывает и больше.

К примеру, надо рассчитать сечение трубы. Для этого дополнительно нужно определиться, сколько воды будет расходоваться через спринклеры или дренчеры противопожарной системы. Это также табличная величина, зависящая от защищаемой площади здания или сооружения. Пусть это будет пожарная система в одну струю, в которой обычно расход составляет 3,5 л/сек или 0,0035 м³/час.

  1. Зная все требуемые параметры водопровода, можно рассчитать сечение труб, которые будут монтироваться в сеть:
  2. S=W/V=0,0035:3 = 0,0012 м².
  3. Зная сечение трубы, можно подсчитать ее диаметр. Формула площади такова: S=πD²/4, отсюда формула диаметра:

D=√4S/π=√(4×0,0012:3,14)=0,0038 м или 38 мм. Такого значения диаметра труб не существует, поэтому надо выбрать стандартное большее — 40 мм.

Это самый простой пример. В реальности большинство водопроводных систем – это сложные схемы, в которых присутствуют отводы, подсоединяемые участки, установленная запорная арматура и прочие препятствия, которые снижают быстроту движения воды в водопроводе.

При этом во многих сетях установлены насосные станции, которые формируют производительность и напор.

Нередко в систему устанавливаются насколько насосных агрегатов, которые работают попеременно: по два, по три, по одному, в разных последовательностях включения и отключения.

В таких случаях расчет проводят ступенчато, для каждого участка по отдельности. При этом обязательно учитываются дополнительные коэффициенты, которые нивелируют полученные значения, а также потери напора на фитингах и в местах установки запорной арматуры.

О работе с «микропотоками»

Если задача вообще не предполагает работы с потоками со скоростью более 1.5 м/c и речь идет о газообразной среде, то можно использовать датчики серии MFS02 (Micro Flow Sense). MFS02 имеет максимальную чувствительность (0,0003 м/с) и скорость срабатывания (время отклика менее 10 мс).

Структурно датчик MFS02 похож на FS2 и состоит из микронагревателя, пары датчиков температуры и дополнительного компенсирующего датчика. Однако MFS02 изготавливаются по другому технологическому процессу: в стеклокерамической подложке датчика выделяется зона, представляющая собой мембрану.

Читайте также:  Деньги улетают как в трубу

Предполагается, что в поток погружается только мембрана, поэтому именно на ней располагаются компоненты для калориметрических измерений, а компенсирующий датчик температуры установлен вне мембраны.

Датчик MFS02 имеет размер всего 3.5 x 5.1 мм, а к контактным площадкам довольно сложно подпаяться, поэтому MFS02 также доступен в составе плат-расширений, предоставляющих доступ к выводам элемента.

Подходящая скорость жидкости, в зависимости от вида трубопровода

Прежде всего учитываются минимальные затраты, без которых невозможно перекачивать жидкость. Кроме того, обязательно рассматривается стоимость трубопровода.

При расчете, нужно всегда помнить об ограничениях скорости двигающейся среды. В некоторых случаях, размер магистрального трубопровода должен отвечать требованиям, заложенным в технологический процесс.

На габариты трубопровода влияют также возможные скачки давления.

Когда делаются предварительные расчеты, изменение давление в расчет не берется. За основу проектирования технологического трубопровода берется допустимая скорость.

Когда в проектируемом трубопроводе существуют изменения направления движения, поверхность трубы начинает испытывать большое давление, направленное перпендикулярно движению потока.

Такое увеличение связано с несколькими показателями:

  • Скорость жидкости;
  • Плотность;
  • Исходное давление (напор).

Причем скорость всегда находится в обратной пропорции к диаметру трубы. Именно поэтому для высокоскоростных жидкостей требуется правильный выбор конфигурации, грамотный подбор габаритов трубопровода.

К примеру, если перекачивается серная кислота, значение скорости ограничивается до величины, которая не станет причиной появления эрозия на стенках трубных колен. В результате структура трубы никогда не будет нарушена.

Закон Паскаля

Фундаментальная основа современной гидравлики сформировалась, когда Блезу Паскалю удалось обнаружить, что действие давления жидкости неизменно в любом направлении. Действие жидкостного давления направлено под прямым углом к площади поверхностей.

Если измерительное устройство (манометр) разместить под слоем жидкости на определенной глубине и направлять его чувствительный элемент в разные стороны, показания давления будут оставаться неизменными в любом положении манометра.

То есть давление жидкости никак не зависит от смены направления. Но давление жидкости на каждом уровне зависит от параметра глубины. Если измеритель давления перемещать ближе к поверхности жидкости, показания будут уменьшаться.

Соответственно, при погружении измеряемые показания будут увеличиваться. Причём в условиях удвоения глубины, параметр давления также удвоится.

Закон Паскаля наглядно демонстрирует действие давления воды в самых привычных условиях для современного быта Отсюда логичный вывод: давление жидкости следует рассматривать прямо пропорциональной величиной для параметра глубины. В качестве примера рассмотрим прямоугольный контейнер размерами 10х10х10 см., который заполнен водой на 10 см глубины, что по объёмной составляющей будет равняться 10 см3 жидкости.

Этот объём воды в 10 см3 весит 1 кг. Используя имеющуюся информацию и уравнение для расчёта, несложно вычислить давление на дне контейнера. Например: вес столба воды высотой 10 см и площадью поперечного сечения 1 см2 составляет 100 г (0,1 кг). Отсюда давление на 1 см2 площади:

P = F / S = 100 / 1 = 100 Па (0,00099 атмосферы)

Если глубина столба воды утроится, вес уже будет составлять 3 * 0,1 = 300 г (0,3 кг), и давление, соответственно увеличится втрое. Таким образом, давление на любой глубине жидкости равноценно весу столба жидкости на этой глубине, поделённому на площадь поперечного сечения столба.

Давление водяного столба: 1 — стенка контейнера для жидкости; 2 — давление столба жидкости на донную часть сосуда; 3 — давление на основание контейнера; А, С — области давления на боковины; В — прямой водяной столб; Н — высота столба жидкости Объем жидкости, создающей давление, называется гидравлический напор жидкости. Давление жидкости благодаря гидравлическому напору, также остаётся зависимым от плотности жидкости.

Об определении направления потока

Термоанемометрические расходомеры имеют некоторые очевидные ограничения. В частности, они не позволяют определить направление потока и не подходят для приложений, требующих высокой чувствительности датчика.

Калориметрические расходомеры, напротив, предназначены для относительно медленных потоков газа с переменным направлением. Калориметрический датчик состоит из трех элементов – микронагревателя и двух датчиков, измеряющих температуру до и после него.

В отсутствии потока тепловое пятно, излучаемое нагревателем, неподвижно, поэтому справа и слева от нагревателя сплошная среда имеет одну и ту же температуру. При возникновении потока тепловое пятно «сдвигается» согласно направлению и скорости потока.

Таким образом, при известных параметрах трубы и характеристиках среды скорость потока может быть измерена по разности показаний датчиков температуры.

При производстве колориметрического датчика на керамическую подложку также наносятся платиновые дорожки и соединения между ними — микронагреватель и два датчика температуры.

Поскольку при наличии потока нагревательный элемент охлаждается, а для измерений этот процесс уже не используется, на датчике расхода предусматривается дополнительный компенсационный датчик температуры.

По такому принципу построены датчики серии FS2. С их помощью можно определять как направление, так и скорость потока. В диапазоне от 0 до 2.5 м/c датчик имеет чувствительность 0.001 м/c.

Диапазон измерений калориметрических датчиков ограничивается самим принципом его работы – при определенной скорости потока тепловое пятно «сдвигается» слишком далеко и разность показателей правого и левого датчиков уже не позволяет судить о скорости потока.

Это досадное свойство калориметрических датчиков довольно просто обходится. Когда поток достигает определенной скорости, можно «переключиться» на работу в термоанемометрическом режиме — начать использовать пару нагреватель + компенсирующий датчик температуры по уже известному нам термоанемометрическому принципу.

При использовании комбинации двух способов измерения модуль величины скорости потока на большей части диапазона определяется квадратичной функцией от напряжения Uflow (нижний график), а направление потока – по напряжению с полномостовой схемы, состоящей из пары датчиков и микронагревателя.

Как рассчитать пропускную способность газовой трубы

Газ – это один из самых сложных материалов для транспортировки, в частности потому, что имеет свойство сжиматься и потому способен утекать через мельчайшие зазоры в трубах. К расчету пропускной способности газовых труб (как и к проектированию газовой системы в целом) предъявляют особые требования.

Формула расчета пропускной способности газовой трубы

  • Максимальная пропускная способность газопроводов определяется по формуле:
  • Qmax = 0.67 Ду2 * p
  • где p — равно рабочему давлению в системе газопровода + 0,10 мПа или абсолютному давлению газа;
  • Ду — условный проход трубы.

Существует сложная формула для расчета пропускной способности газовой трубы. При проведении предварительных расчетов, а также при расчетах бытового газопровода обычно не используется.

  1. Qmax = 196,386 Ду2 * p/z*T
  2. где z — коэффициент сжимаемости;
  3. Т- температура перемещаемого газа, К;

Согласно этой формуле определяется прямая зависимость температуры перемещаемой среды от давления. Чем выше значение Т, тем больше газ расширяется и давит на стенки.

Поэтому инженеры при расчетах крупных магистралей учитывают возможные погодные условия в местности, где проходит трубопровод.

Если номинальное значение трубы DN будет меньше давления газа, образующегося при высоких температурах летом (например, при +38…+45 градусов Цельсия), тогда вероятно повреждение магистрали. Это влечет утечку ценного сырья, и создает вероятность взрыва участка трубы.

Таблица пропускных способностей газовых труб в зависимости от давления

Существует таблица расчетов пропускных способностей газопровода для часто применяемых диаметров и номинального рабочего давления труб. Для определения характеристики газовой магистрали нестандартных размеров и давления потребуются инженерные расчеты. Также на давление, скорость движения и объем газа влияет температура наружного воздуха.

Максимальная скорость (W) газа в таблице — 25 м/с, а z (коэффициент сжимаемости) равен 1. Температура (Т) равна 20 градусов по шкале Цельсия или 293 по шкале Кельвина. Таблица 2. Пропускная способность газового трубопровода в зависимости от давления

Pраб.(МПа) Пропускная способность трубопровода (м?/ч), при wгаза=25м/с;z=1;Т=20?С=293?К
DN 50 DN 80 DN 100 DN 150 DN 200 DN 300 DN 400 DN 500
0,3 670 1715 2680 6030 10720 24120 42880 67000
0,6 1170 3000 4690 10550 18760 42210 75040 117000
1,2 2175 5570 8710 19595 34840 78390 139360 217500
1,6 2845 7290 11390 25625 45560 102510 182240 284500
2,5 4355 11145 17420 39195 69680 156780 278720 435500
3,5 6030 15435 24120 54270 96480 217080 385920 603000
5,5 9380 24010 37520 84420 150080 337680 600320 938000
7,5 12730 32585 50920 114570 203680 458280 814720 1273000
10,0 16915 43305 67670 152255 270680 609030 108720 1691500
Ссылка на основную публикацию
Adblock
detector