Расчет сетевого трансформатора
Статьи » Радиотехнические калькуляторы » Расчет сетевого трансформатора
Если у Вас есть некий трансформаторный сердечник, из которого нужно сделать трансформатор, то необходимо замерить сердечник (как показано на рисунке), а так же замерить толщину пластины или ленты.
Первым делом необходимо рассчитать площадь сечения сердечника — Sc (см²) и площадь поперечного сечения окна — Sо (см²).
Для тороидального трансформатора:
- Sc = H * (D – d)/2
- S0 = π * d2 / 4
Для Ш и П — образного сердечника:
Определим габаритную мощность нашего сердечника на частоте 50 Гц:
- η — КПД трансформатора,
- Sc — площадь поперечного сечения сердечника, см2,
- So — площадь поперечного сечения окна, см2,
- f — рабочая частота трансформатора, Гц,
- B — магнитная индукция, T,
- j — плотность тока в проводе обмоток, A/мм2,
- Km — коэффициент заполнения окна сердечника медью,
- Kc — коэффициент заполнения сечения сердечника сталью.
При расчете трансформатора необходимо учитывать, что габаритная мощность трансформатора должна быть больше расчетной электрической мощности вторичных обмоток.
Исходными начальными данными для упрощенного расчета являются:
- напряжение первичной обмотки U1
- напряжение вторичной обмотки U2
- ток вторичной обмотки l2
- мощность вторичной обмотки Р2 =I2 * U2 = Рвых
- площадь поперечного сечения сердечника Sc
- площадь поперечного сечения окна So
- рабочая частота трансформатора f = 50 Гц
КПД (η) трансформатора можно взять из таблицы, при условии что Рвых = I2 * U2 (где I2 ток во вторичной обмотке, U2 напряжение вторичной обмотки), если в трансформаторе несколько вторичных обмоток, что считают Pвых каждой и затем их складывают.
КПД | 0,76-0,88 | 0,88-0,92 | 0,92-0,95 | 0,95-0,96 |
B — магнитная индукция выбирается из таблицы, в зависимости от конструкции магнитопровода и Pвых.
Конструкция магнитопровода | Магнитная индукция Вмах, [Тл] при Рвых, [Вт] | ||||
5 — 15 | 15 — 50 | 50 — 150 | 150 — 300 | 300 — 1000 | |
Броневая (пластинчатая) | 1,1-1,3 | 1,3 | 1,3-1,35 | 1,35 | 1,35 — 1,2 |
Броневая (ленточная) | 1,55 | 1,65 | 1,65 | 1,65 | 1,65 |
Кольцевая | 1,7 | 1,7 | 1,7 | 1,65 | 1,6 |
j — плотность тока в проводе обмоток , так же выбирается в зависимости от конструкции магнитопровода и Pвых.
Конструкция магнитопровода | Плотность тока J, [а/мм кв.] при Рвых, [Вт] | ||||
5- 15 | 15 — 50 | 50 — 150 | 150 — 300 | 300 — 1000 | |
Броневая (пластинчатая) | 3,9 — 3,0 | 3,0 — 2,4 | 2,4 — 2,0 | 2,0 — 1,7 | 1,7 — 1,4 |
Броневая (ленточная) | 3,8 — 3,5 | 3,5 — 2,7 | 2,7 — 2,4 | 2,4 — 2,3 | 2,3 — 1,8 |
Кольцевая | 5 — 4,5 | 4,5 — 3,5 | 3,5 | 3,0 |
Km — коэффициент заполнения окна сердечника медью
Конструкция магнитопровода | Рабочеенапряж. [В] | Коэффициент заполнения окна Кm при Рвых, [Вт] | ||||
5 — 15 | 15 — 50 | 50 — 150 | 150 — 300 | 300 — 1000 | ||
Броневая (пластинчатая) | до 100 | 0,22-0,29 | 0,29-0,30 | 0,30-0,32 | 0,32-0,34 | 0,34-0,38 |
100-1000 | 0,19-0,25 | 0,25-0,26 | 0,26-0,27 | 0,27-0,30 | 0,30-0,33 | |
Броневая (ленточная) | до 100 | 0,15-0,27 | 0,27-0,29 | 0,29-0,32 | 0,32-0,34 | 0,34-0,38 |
100-1000 | 0,13-0,23 | 0,23-0,26 | 0,26-0,27 | 0,27-0,30 | 0,30-0,33 | |
Кольцевая | 0,18 — 0,20 | 0,20-0,26 | 0,26-0,27 | 0,27-0,28 |
Kc — коэффициент заполнения сечения сердечника сталью
Коэффициенты заполнения для пластинчатых сердечников указаны в скобках при изоляции пластин лаком или фосфатной пленкой.
Конструкция магнитопровода | Коэффициент заполнения Кс при толщине стали, мм | ||||
0,08 | 0,1 | 0,15 | 0,2 | 0,35 | |
Броневая (пластинчатая) | — | 0,7(0,75) | — | 0,85 (0,89) | 0,9 (0,95) |
Броневая (ленточная) | 0,87 | — | 0,90 | 0,91 | 0,93 |
Кольцевая | 0,85 | 0,88 |
После того как Вы определились с габаритной мощностью трансформатора, можно приступить к расчету напряжения одного витка:
где Sc — площадь поперечного сечения сердечника, f — рабочая частота (50 Гц), B — магнитная индукция выбирается из таблицы, в зависимости от конструкции магнитопровода и Pвых.
Теперь определяем число витков первичной обмотки:
w1=U1/u1
где U1 напряжение первичной обмотки, u1 — напряжение одного витка.
Число витков каждой из вторичных обмоток находим из простой пропорции:
где w1 — кол-во витков первичной обмотки, U1 напряжение первичной обмотки, U2 напряжение вторичной обмотки.
Определим мощность потребляемую трансформатором от сети с учетом потерь:
Р1 = Рвых / η
где η — КПД трансформатора.
Определяем величину тока в первичной обмотке трансформатора:
I1 = P1/U1
Определяем диаметры проводов обмоток трансформатора:
d = 0,632*√ I
где d — диаметр провода, мм, I — ток обмотки, А (для первичной и вторичной обмотки).
Онлайн калькулятор расчета трансформатора мощностью от 5 до 1000Вт
После определения диаметра провода, следует учитывать, что диаметр провода рассчитывается без изоляции, воспользуйтесь таблицей данных обмоточных проводов для определения диаметра провода с изоляцией.
Таблица данных обмоточных проводов.
Открыть »
Диаметр без изоляции, мм | Сечение меди, мм² | Диаметр с изоляцией, мм |
0,03 | 0,0007 | 0,045 |
0,04 | 0,0013 | 0,055 |
0,05 | 0,002 | 0,065 |
0,06 | 0,0028 | 0,075 |
0,07 | 0,0039 | 0,085 |
0,08 | 0,005 | 0,095 |
0,09 | 0,0064 | 0,105 |
0,1 | 0,0079 | 0,12 |
0,11 | 0,0095 | 0,13 |
0,12 | 0,0113 | 0,14 |
0,13 | 0,0133 | 0,15 |
0,14 | 0,0154 | 0,16 |
0,15 | 0,0177 | 0,17 |
0,16 | 0,0201 | 0,18 |
0,17 | 0,0227 | 0,19 |
0,18 | 0,0255 | 0,2 |
0,19 | 0,0284 | 0,21 |
0,2 | 0,0314 | 0,225 |
0,21 | 0,0346 | 0,235 |
0,23 | 0,0416 | 0,255 |
0,25 | 0,0491 | 0,275 |
0,27 | 0,0573 | 0,31 |
0,29 | 0,0661 | 0,33 |
0,31 | 0,0755 | 0,35 |
0,33 | 0,0855 | 0,37 |
0,35 | 0,0962 | 0,39 |
0,38 | 0,1134 | 0,42 |
0,41 | 0,132 | 0,45 |
0,44 | 0,1521 | 0,49 |
0,47 | 0,1735 | 0,52 |
0,49 | 0,1885 | 0,54 |
0,51 | 0,2043 | 0,56 |
0,53 | 0,2206 | 0,58 |
0,55 | 0,2376 | 0,6 |
0,57 | 0,2552 | 0,62 |
0,59 | 0,2734 | 0,64 |
0,62 | 0,3019 | 0,67 |
0,64 | 0,3217 | 0,69 |
0,67 | 0,3526 | 0,72 |
0,69 | 0,3739 | 0,74 |
0,72 | 0,4072 | 0,78 |
0,74 | 0,4301 | 0,8 |
0,77 | 0,4657 | 0,83 |
0,8 | 0,5027 | 0,86 |
0,83 | 0,5411 | 0,89 |
0.86 | 0,5809 | 0,92 |
0,9 | 0,6362 | 0,96 |
0,93 | 0,6793 | 0,99 |
0,96 | 0,7238 | 1,02 |
1 | 0,7854 | 1,07 |
1,04 | 0,8495 | 1,12 |
1,08 | 0,9161 | 1,16 |
1,12 | 0,9852 | 1,2 |
1,16 | 1,057 | 1,24 |
1,2 | 1,131 | 1,28 |
1,25 | 1,227 | 1,33 |
1,3 | 1,327 | 1,38 |
1,35 | 1,431 | 1,43 |
1,4 | 1,539 | 1,48 |
1,45 | 1,651 | 1,53 |
1,5 | 1,767 | 1,58 |
1,56 | 1,911 | 1,64 |
1,62 | 2,061 | 1,71 |
1,68 | 2,217 | 1,77 |
1,74 | 2,378 | 1,83 |
1,81 | 2,573 | 1,9 |
1,88 | 2,777 | 1,97 |
1,95 | 2,987 | 2,04 |
2,02 | 3,205 | 2,12 |
2,1 | 3,464 | 2,2 |
2,26 | 4,012 | 2,36 |
2,44 | 4,676 | 2,54 |
Источник: http://rcl-radio.ru/?p=20670
Расчет трансформатора по сечению сердечника калькулятор
Трансформаторы представляют собой электромагнитные приборы, предусматривающие две или более индукционно-связных обмоток и служащие для определения значения переменного тока (напряжения). В состав устройства входит магнитный сердечник с размещенными на нем обмотками. Однофазные агрегаты низкого напряжения используют для питания управляющих цепей.
Обмотка, подключенная к источнику напряжения, называется первичной, а те из них, к которым подсоединяются потребители тока, являются вторичными. Агрегаты делят в зависимости от результата работы.
Радиолюбители знают о такой ситуации, когда необходимо сделать трансформатор, имеющий показатели силы тока и напряжения, отличные от стандартных показателей. Иногда удается найти готовый прибор с нужными параметрами обмоток, но чаще трансформатор приходится изготавливать собственными силами .
Общие действия по расчету трансформатора
Возникает необходимость расчета трансформатора, который в промышленной ситуации представляет собой сложный процесс, но радиолюбители могут рассчитывать свои агрегаты по сравнительно упрощенной схеме:
Сначала определяются со значениями параметров на выходе будущего прибора. Выбирают оптимальный показатель номинальной мощности, который рассчитывается суммированием мощностей всех обмоток вторичного порядка. Этот показатель на каждой обмотке определяется умножением напряжения в вольтах и выходного тока в амперах .
Номинальная мощность позволит высчитать сечение сердечника, полученное в квадратных сантиметрах. На выбор сердечника влияет ширина его центральной пластины и толщина наборного слоя.
Чтобы определить сечение сердечника умножают эти два параметра. Мощность изменяется по мере поступления тока из первичной обмотки во вторичную.
Это происходит благодаря магнитному потоку в сердечнике, поэтому от показателя мощности напрямую зависит размер площади сердечника.
Оптимальным типом является броневой сердечник. Если взять для сравнения торроидальный или стержневой тип, то на изготовление броневого потребуется в полтора раза меньше провода для устройства обмотки. Тороидальная конструкция состоит из кольца, на котором располагаются обмотки, такой тип имеет наименьшее из всех магнитное излучение.
Стержневая конструкция предполагает наличие двух катушек с намоткой провода на каждой. Обмотки разделяются на два и соединяются последовательно.
Трудности возникают с определением направления обмотки, стержневые типы сердечников обычно применяют для мощных трансформаторов.
Броневая конструкция сердечника применяется для малых и средних трансформаторов и состоит из одной катушки с удобным расположением намотки.
Для проверки, поместятся ли все обмотки на выбранном агрегате, используется коэффициент заполнения окна. Чтобы его проверить, рассчитывают площадь окна в сердечнике. После этого находят коэффициент, показывающий количество витков, которые нужно намотать для поднятия напряжения до размера на обмотке в 1 вольт.
Количество витков рассчитывается по потребности в одном витке обмотки на 50 см2. Если измерить площадь сердечника, то число витков считается делением полученной площади на 50. Например, если площадь сечения равна 100 см. то нужно выполнить два витка обмотки на 1 вольт.
Расчет общего числа витков провода делается умножением полученного количества на 1 вольт на общее напряжение. Например, 2 витка умножить на 220, получим 440 витков в одной обмотке.
В нагруженном режиме работы трансформатора может теряться часть напряжения на преодоление сопротивления вторичных обмоток.
Рекомендуется количество витков определять на 5-9% больше полученного при расчете.
Умножают показатель обмоточного напряжения на полученный коэффициент, такой расчет идентичен для всех обмоток трансформатора. Показатель рабочего тока рассчитывается из параметров напряжения в сети и мощности трансформатора. Полученное рабочее значение тока переводится в миллиамперы и производится расчет диаметра провода.
Использование таблицы
Для выбора оптимального показателя количества проводов используют специальные таблицы, которые показывают, как заменяется полученный диаметр провода вместо одного на два или несколько идентичных по показателям совместной работы.
Например, полученное значение в расчете составляет 0,52мм. следовательно, по таблице определяют, что такой показатель можно поменять на два провода по 0,32мм или взять три провода по 0,28 мм. Значит, диаметр провода может состоять из нескольких диаметров, суммарное значение которых должно быть не ниже, чем полученное в расчете.
Проверка правильности выбора
Напоследок проверяют оконный коэффициент заполнения. Он не должен быть выше показания 0,5 с учетом изоляции провода. Если его значение получается больше, тогда нужно брать большее сечение сердечника и весь расчет производится заново.
Принцип расчета трансформатора онлайн
Такой расчет позволяет очень оперативно менять параметры. при этом сокращается время на разработку емкости трансформатора.
В разные по цвету поля вводятся исходные показатели и данные из автоматических таблиц. Можно корректировать данные, вводя собственные показатели.
Калькулятор позволит произвести расчет требуемой площади провода и количества витков в каждой из обмоток.
Данные для ввода в поле автоматического калькулятора
Перед тем как производить автоматический расчет трансформатора онлайн, следует определить показатели для ввода:
- напряжение в первичной обмотке, обычно подставляют значение 220 в;
- выходное напряжение вторичной обмотки в вольтах (подставляет данные из своего требования);
- выходной ток вторичной обмотки в амперах (вводим собственное значение);
- параметры внешнего и внутреннего диаметра сердечника (ставим свое значение);
- указываем высоту сердечника по собственным параметрам.
Расчет трансформатора по выбранным из источников формулам производится достаточно медленно, существует опасность допустить ошибки. Расчет онлайн позволит выполнить конструирование быстро и результативно.
Такой удобный расчет подойдет для новичков-радиолюбителей, с не меньшим успехом им могут воспользоваться и профессионалы.
Самый быстрый способ произвести расчет – ввести все данные и нажать кнопку .
Положительные моменты работы с автоматическим расчетом онлайн
Расчеты попавшего в руки старого трансформатора, теперь не покажутся трудными и долгими. Полученные данные для перемотки трансформатора будут идеальными именно для тех исходных данных, которые вводятся в поля таблицы, кроме того, автоматический калькулятор имеет массу преимуществ:
- самостоятельно конструктору ничего считать не приходится;
- для собственных целей можно выбрать большое число вариантов и самостоятельно их выполнить;
- все производимые действия по расчету понятны и просты даже для тех, кто впервые сталкивается с проблемой;
- для тех, кто впервые решил испытать калькулятор онлайн, есть специальная простая и доступная информация и понятные объяснения;
- для получения результатов достаточно нажать одну кнопку;
- выбор оптимального варианта допускает проводить неоднократные расчеты, используя различные параметры.
Конструкторы трансформаторов получили надежного помощника в виде калькулятора онлайн, теперь любой начинающий радиолюбитель осуществит свои мечты по изготовлению трансформатора собственноручно.
Источник: http://studvesna73.ru/07/23/4141/
Расчёт трансформатора своими руками: онлайн-калькуляторы, особенности автотрансформаторов и торов
Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом.
Случается так, что при выходе трансформатора из строя или при самостоятельном изготовлении радиоприборов не получается найти устройство с нужными параметрами серийного производства.
Поэтому приходится выполнять расчёт трансформатора и его изготовление самостоятельно.
Принцип работы устройства
Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:
- сердечника;
- обмотки;
- каркаса для расположения обмоток;
- изолятора;
- дополнительных элементов, обеспечивающих жёсткость устройства.
В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов).
Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле.
Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.
В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.
Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку.
Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС).
Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.
Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.
От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.
Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе.
Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо.
Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.
Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии.
А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше.
На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.
Виды сердечников
Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода.
Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения.
Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т. е. мощность не изменяется.
Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.
По конструкции сердечник разделяют на три основных вида:
- стержневой;
- броневой;
- тороидальный.
Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом.
Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой.
Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.
Зная форму сердечника, несложно рассчитать мощность трансформатора. Находится она по несложной формуле: P=(S/K)*(S/K), где:
- S — площадь сечения сердечника.
- K — постоянный коэффициент равный 1,33.
Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.
Типовой расчёт параметров
Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику. Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:
- напряжение первичной и вторичной обмотки;
- габаритны сердечника;
- толщину пластины.
Стержневой тип магнитопровода
В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:
- Рассчитывается ток нагрузки: In=Po/U2, А.
- Вычисляется величина тока вторичной обмотки: I2 = 1,5*In, А.
- Определяется мощность вторичной обмотки: P2 = U2*I2, Вт.
- Находится общая мощность устройства: Pт = 1,25*P2, Вт.
- Вычисляется сила тока первичной обмотки: I1 = Pт/U1, А.
- Находится необходимое сечение магнитопровода: S = 1,3*√ Pт, см².
Следует отметить, что если конструируется устройство с несколькими выводами во вторичной обмотке, то в четвёртом пункте все мощности суммируются, и их результат подставляется вместо P2.
После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:
- U1 — напряжение первичной обмотке, В.
- S — площадь сердечника, см².
- K1, K2 — число витков в обмотках, шт.
Остаётся вычислить диаметр наматываемой проволоки. Он равен D = 0,632*√ I, где:
- d — диаметр провода, мм.
- I — обмоточный ток рассчитываемой катушки, А.
При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т. е. поместится ли обмотка на каркас. Для этого площадь окна вычисляется по формуле: Sо = 50*Pт, мм2.
Особенности автотрансформатора
Автотрансформаторы рассчитываются аналогично простым трансформаторам, только сердечник определяется не на всю мощность, а на мощность разницы напряжений.
Например, мощность магнитопровода 250 Вт, на входе 220 вольт, на выходе требуется получить 240 вольт. Разница напряжений составляет 20 В, при мощности 250 Вт ток будет равен 12,5 А. Такое значение тока соответствует мощности 12,5*240=3000 Вт.
Потребление сетевого тока составляет 12,5+250/220=13,64А, что как раз и соответствует 3000Вт=220В*13,64А. Трансформатор имеет одну обмотку на 240 В с отводом на 220 В, который подключён к сети.
Участок между отводом и выходом мотается проводом, рассчитанным на 12,5А.
Трансформатор тороидального типа
Тороидальные трансформаторы имеют ряд преимуществ по сравнению с другими типами: меньший размер, меньший вес и при этом большее КПД. При этом они легко наматываются и перематываются.
Использование онлайн-калькулятора для расчёта тороидального трансформатора позволяет не только сократить время изготовления изделия, но и «на лету» поэкспериментировать с разными вводными данными.
В качестве таких данных используются:
- напряжение входной обмотки, В;
- напряжение выходной обмотки, В;
- ток выходной обмотки, А;
- наружный диаметр тора, мм;
- внутренний диаметр тора, мм;
- высота тора, мм.
Необходимо отметить, что почти все онлайн-программы не демонстрируют особой точности в случае расчёта импульсных трансформаторов. Для получения высокой точности можно воспользоваться специально разработанными программами, например, Lite-CalcIT, или рассчитать вручную. Для самостоятельного расчёта используются следующие формулы:
- Мощность выходной обмотки: P2=I2*U2, Вт.
- Габаритная мощность: Pg=P2/Q, Вт. Где Q — коэффициент, берущийся из справочника (0,76−0,96).
- Фактическое сечение «железа» в месте размещения катушки: Sch= ((D-d)*h)/2, мм2.
- Расчётное сечение «железа» в месте расположения катушки: Sw =√Pq/1.2, мм2
- Площадь окна тора: Sfh=d*s* π/4, мм2.
- Значение рабочего тока входной обмотки: I1=P2/(U1*Q*cosφ), А, где cosφ справочная величина (от 0,85 до 0,94).
- Сечение провода находится отдельно для каждой обмотки из выражения: Sp = I/J, мм2., где J- плотность тока, берущаяся из справочника (от 3 до 5).
- Число витков в обмотках рассчитывается отдельно для каждой катушки: Wn=45*Un*(1-Y/100)/Bm* Sch шт., где Y — табличное значение, которое зависит от суммарной мощности выходных обмоток.
- Остается найти выходную мощность и расчёт тороидального силового трансформатора считается выполненным. Pout = Bm*J*Kok*Kct* Sch* Sfh /0,901, где: Bm — магнитная индукция, Kok — коэффициент заполнения проводом, Kct —коэффициент заполнения железом.
Все значения коэффициентов берутся из справочника радиоаппаратуры (РЭА). Таким образом, проводить вычисления в ручном режиме несложно, но потребуется аккуратность и доступ к справочным данным, поэтому гораздо проще использовать онлайн-сервисы.
Рекомендации по сборке и намотке
При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.
Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью.
Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется.
Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.
При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.
Источник: https://elektro.guru/izmereniya-i-raschet/raschyot-transformatora-na-kalkulyatore-v-domashnih-usloviyah.html
Расчет трансформатора
Главная > Советы электрика > Расчет трансформатора
Трансформаторы используются в блоках питания различной аппаратуры для преобразования переменного напряжения.
Блоки питания, собранные по трансформаторной схеме, постепенно снижают распространенность благодаря тому, что современная схемотехника позволяет понизить напряжение без самого громоздкого и тяжелого элемента системы питания.
Трансформаторы для блока питания актуальны в тех случаях, когда габариты и масса не критичны, а требования к безопасности велики. Обмотки (кроме автотрансформатора) осуществляют гальваническое разделение и изоляцию цепей первичного (или сетевого) и вторичного (выходного) напряжений.
Трансформатор
Работа устройства основана на всем известном явлении электромагнитной индукции. Переменный ток, проходящий через провод первичной обмотки, наводит переменный магнитный поток в стальном сердечнике, а он, в свою очередь, вызывает появление напряжения индукции в проводе вторичных обмоток.
Совершенствование трансформатора с момента его изобретения сводится к выбору материала и конструкции сердечника (магнитопровода).
Типы сердечников
Металл для магнитопровода должен иметь определенные технические характеристики, поэтому были разработаны специальные сплавы на основе железа и особая технология производства.
Для изготовления трансформаторов наибольшее распространение получили следующие типы магнитопроводов:
- броневые;
- стержневые;
- кольцевые.
Силовой трансформатор низкой частоты, как понижающий, так и повышающий, имеет сердечник из отдельных пластин трансформаторного железа. Такая конструкция выбрана из соображения минимизации потерь из-за образования вихревых токов в сердечнике, которые нагревают его и снижают КПД трансформатора.
Броневые сердечники наиболее часто выполняются из Ш-образных пластин. Стержневые магнитопроводы могут изготавливаться из П-образных, Г-образных или прямых пластин.
Кольцевые магнитопроводы выполняются из тонкой ленты трансформаторной стали, намотанной на оправку и скрепленной клеящим составом.
Из ленты также могут выполняться броневые и стержневые сердечники, причем такая технология наиболее часто встречается у маломощных устройств.
Виды магнитопроводов
Ниже приведена методика расчета трансформатора, где показано:
- как рассчитать мощность трансформатора;
- как выбрать сердечник;
- как определить количество витков и сечение (диаметр) проводов обмоток;
- как собрать и проверить готовую конструкцию.
Исходные данные, необходимые для расчета
Расчет сетевого трансформатора начинается с определения его полной мощности. Поэтому, перед тем, как рассчитать трансформатор, нужно определиться с мощностью потребления всех, без исключения, вторичных обмоток.
Согласно мощности выбирается сечение сердечника. Опять же, от мощности определенным образом зависит и КПД. Чем больше полная мощность, тем выше КПД.
Принято в расчетах ориентироваться на такие значения:
- до 50 Вт – КПД 0.6;
- от 50 Вт до 100 Вт – КПД 0.7;
- от 100 Вт до 150 Вт – КПД 0.8;
- выше 150 Вт – КПД 0.85.
Количество витков сетевой и вторичной обмоток рассчитывается уже после выбора магнитопровода. Диаметр или поперечное сечение проводов каждой обмотки определяется на основании протекающих через них токов.
Выбор магнитопровода сердечника
Минимальное сечение сердечника в см2 определяется из габаритной мощности. Габаритная мощность трансформатора – это суммарная полная мощность всех вторичных обмоток с учетом КПД.
Итак, мощность трансформатора можно определить, это полная суммарная мощность всех вторичных обмоток:
Умножая полученное значение на КПД, завершаем расчет габаритной мощности.
Определение площади стержня сердечника производится после того, как произведен расчет габаритной мощности трансформатора из такого выражения:
S=√P.
Зная площадь сечения центрального стержня магнитопровода, можно подбирать нужный из готовых вариантов.
Важно! Сердечник, на котором будут располагаться обмотки, должен иметь, по возможности, сечение, как можно более близкое к квадрату. Площадь сечения должна быть равной или несколько больше расчетного значения.
Качество работы и технологичность сборки также зависит от формы магнитопровода. Наилучшим качеством обладают конструкции, выполненные на кольцевом магнитопроводе (тороидальные).
Их отличает максимальный КПД для заданной мощности, наименьший ток холостого хода и минимальный вес.
Основная сложность заключается в выполнении обмоток, которые в домашних условиях приходится мотать исключительно вручную при помощи челнока.
Проще всего делать трансформаторы на разрезных ленточных магнитопроводах типа ШЛ (Ш-образный) или ПЛ (П-образный). Как пример, можно привести мощный трансформатор блока питания старого цветного телевизора.
Трансформатор телевизора УЛПЦТИ
Трансформаторы старого времени выпуска или современные дешевые выполнены с использованием отдельных Ш,- или П-образных пластин. Технологичность выполнения обмоток у них такая же, как у ленточных разрезных, но трудность состоит в сборке магнитопровода. Такие устройства практически всегда будут иметь повышенный ток холостого хода, особенно, если используемое железо низкого качества.
Расчет количества витков и диаметра проводов
Расчет трансформатора начинается с определения необходимого количества витков обмоток на 1 В напряжения. Найденное значение будет одинаковым для любых обмоток. Для собственных целей можно применить упрощенный метод расчета. Посчитать, сколько надо витков на 1 В можно, подставив площадь сечения стержня магнитопровода в см2 в формулу:
где k – коэффициент, зависящий от формы магнитопровода и его материала.
На практике с достаточной точностью приняты следующие значения коэффициента:
- 60 – для магнитопровода из Ш,- и П-образных пластин;
- 50 – для ленточных магнитопроводов;
- 40 – для тороидальных трансформаторов.
Большие значения связаны с невозможностью плотного заполнения сердечника отдельными металлическими пластинами. Как видно, наименьшее количество витков будет иметь тороидальный трансформатор, отсюда и выигрыш в массе изделия.
Зная, сколько витков нужно на 1 В, можно легко узнать количество витков каждой из обмоток:
где U – значение напряжения холостого хода на обмотке.
У маломощных трансформаторов (до 50 Вт) нужно получившееся количество витков первичной обмотки увеличить на 5%. Таким образом, компенсируется падение напряжения, которое возникает на обмотке под нагрузкой (в понижающих трансформаторах первичная обмотка всегда имеет большее количество витков, чем вторичные).
Диаметр провода рассчитываем с учетом минимизации нагрева вследствие протекания тока. Ориентировочным значением считается плотность тока в обмотках 3-7 А на каждый мм2 провода. На практике расчет диаметра проводов обмоток можно упростить, используя простые формулы, что дает допустимые значения в большинстве случаев:
Меньшее значение применяется для расчета диаметров проводов вторичных обмоток, поскольку у понижающего трансформатора они располагаются ближе к поверхности и имеют лучшее охлаждение.
Зная расчетное значение диаметра обмоточных проводов, нужно выбрать из имеющихся такие, диаметр которых наиболее близок к расчетному, но не менее.
После определения количества витков во всех обмотках, расчет обмоток трансформатора не лишним будет дополнить проверкой, поместятся ли обмотки в окно магнитопровода. Для этого подсчитайте коэффициент заполнения окна:
Для тороидальных сердечников c внутренним диаметром D формула имеет вид:
Для Ш,- и П-образных магнитопроводов коэффициент не должен превышать 0.3. Если это значение больше, то разместить обмотку не получится.
Тороидальный трансформатор
Выходом из ситуации будет выбор сердечника с большим сечением, но это если позволяют габариты конструкции. В крайнем случае, можно уменьшить количество витков одновременно во всех обмотках, но не более чем на 5%.
Несколько возрастет ток холостого хода, и не избежать повышенного нагрева обмоток, но в большинстве случаев это не критично.
Также можно немного уменьшить провода по сечению, увеличив тем самым плотность тока в обмотках.
Важно! Увлекаться увеличением плотности тока нельзя, поскольку это вызовет сильный рост нагрева и, как следствие, нарушение изоляции и перегорание обмоток.
Изготовление обмоток
Намотка провода обмотки трансформатора производится на каркас, изготовленный из плотного картона или текстолита, за исключением тороидальных сердечников, в которых обмотка ведется непосредственно на магнитопровод, который перед намоткой нужно тщательно заизолировать. Можно использовать готовый пластиковый, который продается вместе с магнитопроводом.
Сборный каркас обмотки
Пластиковый каркас
Между отдельными обмотками нужно прокладывать межобмоточную изоляцию. Важнее всего – хорошо заизолировать вторичную обмотку от первичной. В качестве изоляции можно использовать трансформаторную бумагу, лакоткань, фторопластовую ленту.
Ленту из фторопласта нужно использовать с осторожностью. Несмотря на высочайшие электроизоляционные качества, тонкая лента фторопласта под действием натяжения или давления (особенно межу первичной и вторичной обмотками) способна «потечь» и обнажить отдельные витки обмотки.
Особенно этим страдает лента для уплотнения сантехнических изделий.
Фторопластовая лента
В отдельных, ответственных случаях, в процессе намотки можно пропитать первичную обмотку (если трансформатор понижающий) изоляционным лаком. Пропитка готового устройства в домашних условиях эффекта почти не даст, поскольку лак не попадет в глубину обмотки. Для этих целей на производствах существует аппаратура вакуумной пропитки.
Выводы обмоток делаются отрезками гибкого изолированного провода для проводов, диаметр которых менее 0.5 мм. Более толстый провод можно выводить напрямую. Места пайки гибкого и обмоточного проводов нужно дополнительно проложить несколькими слоями изоляции.
Сборка трансформатора
При сборке нужно учитывать следующие нюансы:
- Пакет сердечника должен собираться плотно, без щелей и зазоров;
- Отдельные части ленточного магнитопровода подогнаны друг к другу, поэтому менять местами их нельзя. Требуется аккуратность, поскольку при отслоении отдельных лент их невозможно будет установить на место;
- Деформированные пластины сборного сердечника нельзя выравнивать молотком – трансформаторная сталь теряет свои свойства при механических нагрузках;
- Пакет пластин сборного сердечника должен быть собран максимально плотно, поскольку при работе рыхлого сердечника будет издаваться сильный гул, увеличивающийся при нагрузке;
- Весь пакет сердечника любого типа нужно плотно стянуть по той же причине.
Обратите внимание! Качество сборки будет лучше, если торцы ленточного разрезного сердечника перед сборкой покрыть лаком. Также готовый собранный сердечник перед окончательной утяжкой можно покрыть лаком.
При этом можно добиться значительного понижения постороннего звука.
Проверка готового трансформатора заключается в измерении тока холостого хода и напряжения обмоток под номинальной нагрузкой и на нагрев при максимальной нагрузке. Все измерения рассчитанного и собранного трансформатора нужно проводить только после полной сборки, поскольку с незатянутым сердечником ток холостого хода может быть больше обычного в несколько раз.
Ток холостого хода сильно различается в трансформаторах различных типов и составляет от 10 мА для тороидальных трансформаторов, до 200 мА – с Ш-образным сердечником из низкокачественного трансформаторного железа.
Измерение холостого тока
Приведен расчет трансформатора, который при наличии навыков можно произвести за пару десятков минут.
Для тех, кто сомневается в своих силах или боится сделать ошибку, расчет силового трансформатора можно выполнить, используя калькулятор для расчета, который может работать как в off-line, так и в on-line режимах.
Согласно данной методике возможна перемотка перегоревшего трансформатора. Для неисправного трансформатора расчет также ведется от имеющегося сердечника и значения напряжения вторичных обмоток.
Видео
Источник: https://elquanta.ru/sovety/raschet-transformatora.html
Способы расчёта различных конфигураций трансформаторов
Как бы ни развивалась электроника, но всё же отказаться от такого устройства, как трансформатор пока не удаётся.
Каждый надёжный блок питания и преобразователь напряжения содержит этот электромагнитный аппарат с гальванической развязкой обмоток.
Они применяются широко и на производстве, и в быту, и представляют собой статическое электромагнитное устройство, работающее по принципу взаимоиндукции. Состоят такие устройства из двух основных элементов:
- замкнутого магнитопровода;
- двух и более обмоток.
Обмотки трансформаторов не имеют между собой никакой связи, кроме индуктивной. Предназначен он для преобразования только переменного напряжения, частота которого, после передачи по магнитопроводу, будет неизменна.
Расчет параметров трансформатора необходим для того, чтобы на вход этого устройства было подано одно напряжение, а на выходе генерировалось пониженное или повышенное напряжение другой заданной величины. При этом нужно учесть токи, протекающие во всех обмотках, а также мощность устройства, которая зависит от подключаемой нагрузки и от назначения.
Любой даже простейший расчет трансформатора состоит из электрической и конструктивной составляющей. Электрическая часть включает в себя:
- Определение напряжений и токов, протекающих по обмоткам;
- Определение коэффициента трансформации.
К конструктивным относятся:
- Размеры сердечника и тип устройства;
- Выбор материала сердечника трансформатора;
- Возможные варианты закрывающего корпуса и вентиляции.
Через один квадратный сантиметр сечения магнитопровода протекает магнитная индукция, единица измерения её — Тесла. Тесла, в свою очередь, выдающийся физик, в честь которого и она и названа. Это значение напрямую зависит от частоты тока. И так при частоте 50 Гц и, допустим, 400 Гц величины индукция (тесла) будет разной, а значит и габариты устройства с увеличением частоты снижаются.
После этого определяют падение напряжения и потери в магнитопроводе, на этапе электрического расчёта все эти величины определяются лишь примерно.
Расчет нагрузки в трансформаторе является ключевым в его исполнении. В сварочном, например, нагрузочную особенность выражают из режима короткого замыкания.
Большое значение тока короткого замыкания, связано с малым значением сопротивления трансформатора в данных условиях работы.
Важнейшим элементом всех формул данного расчёта является коэффициент трансформации, который определяется как соотношение числа намотанных витков в первичной обмотке, к количеству витков во вторичной обмотке.
Если обмоток не две, а больше, значит и соответственно таких коэффициентов тоже будет несколько. Если известны напряжения обмоток, то можно его рассчитать как отношение напряжений первичной обмотки, ко вторичной.
Расчет силового трансформатора
Расчет силового трансформатора напрямую зависит от количества фаз в питающей сети, то есть однофазной или же трехфазной. Прежде всего в силовом трансформаторе основную роль играет его мощность.
Упрощенный расчет трансформаторов малой мощности и большой можно выполнить и в домашних условиях.
Расчёт потерь неизбежен, как и для любых электромагнитных устройств, здесь же он состоит из двух основных магнитных составляющих:
- вихревые токи;
- намагничивание.
Расчет однофазного трансформатора
Рассчитывая понижающие трансформаторы однофазного тока, как самые распространенные в быту, для начала нужно выяснить его мощность. Конечно, понизить напряжение можно и другими способами, но этот самый эффективный и даёт ещё вдобавок гальваническую развязку, а значит возможность подключения силовой нагрузки.
Например, если напряжение первичной обмотки 220 Вольт, что свойственно для стандартных сетей однофазного тока, то вторичное напряжение нужно определить по нагрузке, которая будет подключаться к нему.
Это может быть как низшее, так и высшее напряжение. Например, для зарядки автомобильных аккумуляторов необходимо напряжение 12-14 Вольт. То есть вторичное напряжение и ток тоже должно быть заранее известно.
Примерная мощность будет равна произведению тока на напряжение. Стоит учесть также и КПД. Для силовых аппаратов он составляет примерно 0,8–0,85. Тогда с учётом этого коэффициента полезного действия расчётная мощность будет составлять:
Ррасч= P*КПД
Именно эта мощность и ложится в основу расчёта поперечного сечения сердечника, на котором будут произведены намотки обмоток. Кстати, видов этих сердечников магнитопровода может быть несколько, как показано на рисунке снизу.
Далее, по этой формуле определяем сечение
S (см2) = (1,0 ÷1,3) √Р
Коэффициент 1–1,3 зависит от качества электротехнической стали. К электротехнической стали относится чистое железо в виде листов или ленты толщиной 0,1–8 мм либо в виде сортового проката (круг или квадрат) различных размеров.
После чего определяется количество витков, на один вольт напряжения.
N = (50 ÷70)/S (см2)
Берем среднюю величину коэффициента 60.
Теперь зная количество витков на один вольт есть возможность подсчитать количество витков в каждой обмотке. Осталось всего лишь найти сечение провода, которым выполнится намотка обмоток.
Медь, для этого лучший материал, так как обладает высокой токопроводимостью и быстро остывает в случае нагрева. Тип провода ПЭЛ или ПЭВ. Кстати, нагрев даже самого идеального электромагнитного устройства неизбежен, поэтому при изготовлении сетевого трансформатора актуален и вопрос вентиляции.
Для этого хотя бы предусмотреть на корпусе естественную вентилируемую конструкцию путём вырезания отверстий.
Ток в обмотке равен
I=P/U
Диаметр сечения проводника для обмотки определяется по формуле:
D= (0,7÷0,9)√I
где 0,7-0,9 это коэффициент плотности тока в проводнике. Чем больше его значение, тем меньше будет греться провод при работе.
Существует множество методов расчёта характеристик и параметров, этот же самый простой, но и примерный (неточный). Более точный расчет обмоток трансформатора применяется для производственных и промышленных нужд.
Расчёт трехфазного трансформатора
Изготовление трехфазного трансформатора и его точный расчёт процесс более сложный, так как здесь первичная и вторичная обмотка состоят уже из трёх катушек. Это разновидность силового трансформатора, магнитопровод которого выполнен чаще всего стержневым способом.
Здесь уже появляются такие понятие, как фазные и линейные напряжения. Линейные измеряются между двумя фазами, а фазные между фазой и землёй. Если трансформатор трехфазный рассчитан на 0,4 кВ, то линейное напряжение будет 380В, а фазное 220 В.
Обмотки могут быть соединены в звезду или треугольник, что даёт разные величины токов и напряжений.
Обмотки трехфазного трансформатора расположены на стержнях так же, как и в однофазном, т. е. обмотки низшего напряжения НН размещаются ближе к стержню, а обмотки высшего напряжения ВН — на обмотках низшего напряжения.
Высоковольтные трансформаторы трёхфазного тока рассчитываются и изготавливаются исключительно в промышленных условиях. Кстати, любой понижающий трансформатор при обратном включении, выполняет роль повышающего напряжение устройства.
Расчет тороидального трансформатора
Такая конструкция трансформаторов используется в радиоэлектронной аппаратуре, они обладают меньшими габаритами, весом, а также повышенным значением КПД. За счёт применения ферритового стержня помехи практически отсутствует, это даёт возможность не экранировать данные устройства.
Простой расчет тороидального трансформатора состоит из 5 пунктов:
- Определение мощность вторичной обмотки P=Uн*Iн;
- Определение габаритной мощности трансформатора Рг=Р/КПД. Величина его КПД примерно 90-95%;
- Площадь сечения сердечника и его размеры
- Определение количества витков на вольт и соответственно количества витков для необходимой величины напряжения.
- Расчёт тока в каждой обмотке и выбор диаметра проводника делается аналогично, как и в силовых однофазных трансформаторах, описанных выше.
Расчет трансформатора для сварочного полуавтомата
Сварочный полуавтомат предназначен для сварки с механической подачей специальной сварочной проволоки вместо электрода. Источник питания такого устройства также имеет в своей основе мощный трансформатор.
Расчёт основан на принципе его работы, на выходе которого должно быть 60 Вольт при холостом ходу. Работает он в короткозамкнутом режиме поэтому и нагрев его обмоток явление нормальное.
Расчёт в принципе тоже аналогичен, только в этом случае ещё стоит учесть мощность при продолжительной сварке
Pдл = U2I2 (ПР/100)0.5 *0.001.
Напряжение и силу одного витка измеряют в вольтах и оно будет равно E=Pдл0.095+0.55. Зная эти величины можно приступить и к полному расчёту.
Расчет импульсного трансформатора двухтактного преобразователя
Преимуществом двухтактных преобразователей является их простота и возможность наращивания мощности.
В правильно сконструированном двухтактном преобразователе через обмотку проходит неизменный ток, поэтому сильное подмагничивание сердечника отсутствует. Это позволяет использовать полный цикл перемагничивания и получить максимальную мощность.
Так как он выполняется на ферритовом сердечнике то и расчет выходного напряжения трансформатора аналогичен обычному тороидальному.
Упростить варианты расчета трансформатора можно применяя специальные калькуляторы расчета, которые предлагают некоторые интернет-ресурсы. Стоит только внести желаемые данные, и автомат выдаст нужные параметры планируемого электромагнитного устройства.
Видео с расчетом трансформатора
Источник: https://amperof.ru/elektropribory/sposoby-raschyota-razlichnyh-konfiguratsij-transformatorov.html