Виды и особенности аппаратов для контактной сварки

Электрический сварочный аппарат

Виды и особенности аппаратов для контактной сварки

  • 04 января
  • 217 просмотров
  • 40 рейтинг

Сварочный аппарат является электроустройством, с помощью которого производится сварка, а именно самый надежный и долговечный способ крепления металлических деталей, существующий уже более века.

Схема устройства сварочного аппарата.

Это электрооборудование выполняет соединение или резку деталей из металлов и их различных соединений с минимизированными затратами. Рассмотрим более подробно виды таких аппаратов и их основные функции.

Сварочные источники тока

Данные виды сварочных аппаратов нужны для преобразования напряжения в ток. Зависимо от схемы на выходе получаем электродугу, имеющую постоянный или же переменный потенциал. По типам различают следующие аппараты:

  • трансформаторный;
  • выпрямительный;
  • инверторный.

Конструкция трансформатора.

Трансформаторный источник самый простой в использовании, работает за счет трансформатора, который снижает напряжение сети к сварочному и имеет на выходе переменный ток. Сила тока регулируется за счет изменения расстояния между обмотками.

Для сварки цветных металлов или улучшения горения дуги трансформаторный сварочный аппарат доукомплектовывается дополнительными элементами, что увеличивает его вес в несколько. Наиболее ответственные работы выполняются за счет применения электродов переменного тока.

В современной модели трансформаторного аппарата используют мощные вентиляторы, ведь большая часть его энергии приходится на нагрев. Данный аппарат для сварки имеет КПД около 90%.

Достоинства:

  • приемлемая стоимость;
  • надежность;
  • долговечность — качество, позволяющее использовать различные сварочные аппараты переменного тока на протяжении многих лет.

Недостатки:

  • имеет довольно большой вес;
  • применяется редко, несмотря на все свои достоинства.

Схема сварочного выпрямителя.

Выпрямительный источник — оборудование, использующееся для сварки после преобразования переменного тока в постоянный. Он состоит из следующих комплектующих:

  • токопонижающий трансформатор;
  • диод;
  • датчик регулировки и защиты.

Данный сварочный аппарат обеспечивает, по сравнению с трансформаторным аппаратом, наиболее качественные швы при варке. Выпрямительный аппарат имеет наибольшую стабильность в части сварочного тока и электрической дуги.

Достоинства:

  • небольшая стоимость;
  • надежность.

Недостатки:

  • большой вес;
  • сложность в работе, ведь в процессе варки наблюдается сильное перенапряжение сети.

Устройство инверторного сварочного аппарата.

Инверторный источник — это наиболее популярный в настоящее время вид сварочного аппарата. Рассмотрим его отличия от трансформаторных и выпрямительных сварочных аппаратов:

  1. Работает при токе частоты в несколько десятков килогерц (обычный до 50 Гц).
  2. Требуется трансформатор малых габаритов.
  3. Более качественные швы.
  4. Трансформатор инвертора весит несколько сот грамм при токе 160А, остальные — 18 кг.
  5. Общая масса всего инвертора не более 7 кг.

Инвертор состоит из преобразователей электрической энергии, сетевого фильтра, трансформатора. Дополнительно для защиты инверторов применяют датчики для охлаждения, предохранители, ограничители перенапряжения.

Есть недостаток: не желательно работать в запыленных помещениях, при дожде.

Источник: https://expertsvarki.ru/oborudovanie/svarochnyj-apparat.html

Технология контактной сварки

Контактная сварка является основным видом сварки давлением термомеханического класса. Она осуществляется с применением давления и нагрева места сварки проходящим через заготовки электрическим током.Основными видами контактной сварки являются стыковая, точечная и шовная.

Рассмотрим сущность процесса на примере стыковой контактной сварки (рис.1). Свариваемые заготовки 3, закрепленные в зажимах (электродах) 2 стыковой машины, сжимаются осевой силой Р. Электроды подключены к сварочному трансформатору 5, при включении которого через заготовки протекает сварочный ток.

Он нагревает заготовки, причем наибольшее количество теплоты выделяется в месте контакта 6 (отсюда название способа) между заготовками, так как сопротивление контакта является наибольшим во вторичной цепи и вот почему: действительное сечение контакта значительно меньше сечения заготовок за счет касания заготовок только по выступам поверхностей; на поверхности металла имеются пленки оксидов и загрязнений с малой электропроводимостью.

Рис.1. Схема контактной стыковой сварки:

1 – неподвижная плита; 2 – зажимы (электроды); 3 – заготовки; 4 – подвижная плита; 5 – сварочный трансформатор; 6 – контакт

Количество выделяемой теплоты Q(Дж) определяется законом Джоуля-Ленца: Q = I2Rt

где I – сварочный ток, A; R – сопротивление контакта, Ом; t – время протекания тока, с.

Простой анализ этой формулы показывает, что эффективный нагрев места сварки может быть получен при больших значениях сварочного тока, так как оно входит в выражение во второй степени. Действительно, сварочный ток при контактной сварке может достигать тысяч и даже десятков тысяч ампер.

Нагрев металла приводит к повышению его пластичности . В результате под действием осевой силы происходит пластическая деформация. Микронеровности поверхности сминаются, пленки разрушаются, поверхностные атомы сближаются до расстояний, соизмеримых с параметром кристаллической решетки, что обеспечивает возможность образования межатомных связей.

Контактная сварка осуществляется без расплавления и с расплавлением металла.

Стыковую сварку с разогревом стыка до пластического состояния называют сваркой сопротивлением, стыковую сварку с разогревом стыка до оплавления – сваркой оплавлением.

Различие этих способов может быть объяснено с использованием циклограмм процессов, которые представляют собой графическое изображение изменения во времени параметров процесса сварки.

При сварке сопротивлением (рис. 2, а) заготовки сначала сжимают усилием, обеспечивающим образование физического контакта свариваемых поверхностей, а затем пропускают сварочный ток. После разогрева места сварки происходит осадка и образуется соединение в твердой фазе.

Для обеспечения равномерного нагрева по всему сечению поверхности заготовок тщательно подготовляют.

Необходимость обеспечения равномерного нагрева ограничивает возможность применения сварки сопротивлением только для деталей небольшого (площадью до 200 мм2) и простого сечения (круг, квадрат).

Рис. 2. Циклограммы контактной стыковой сварки:

а – сопротивлением; б – оплавлением; I – сварочный ток; Р – усилие сжатия; S – перемещение подвижной плиты; t – время

Сущность сварки оплавлением (рис. 2, б) заключается в том, что свариваемые заготовки сближают при включенном сварочном трансформаторе. Касание поверхностей происходит по отдельным выступам.

Ввиду того, что площадь образовавшихся контактов очень небольшая, плотность тока, протекающего через эти контакты, настолько велика, что происходит мгновенное оплавление металла с образованием жидких перемычек, которые под действием паров металла разрушаются.

Часть металла в виде искр выбрасывается из стыка. Вместе с жидким металлом выбрасываются загрязнения, которые присутствуют на поверхности заготовок.

Продолжающееся сближение заготовок приводит к образованию новых перемычек и их оплавлению. Непрерывное образование и разрушение контактов-перемычек между торцами приводит к образованию на торцах слоя жидкого металла. После оплавления торцов повсей поверхности осуществляют осадку. При осадке жидкий металл из стыка выдавливается наружу и, затвердевая, образует грат.

Рис. 3. Схема точечной сварки:

1 – электроды; 2 – заготовки; 3 – сварная точка

Обычно грат удаляют в горячем состоянии. Сварка оплавлением может быть прерывистая и непрерывная. При прерывистом оплавлении заготовки под током приводят в соприкосновение и вновь разводят.

Образующийся при разведении электрический разряд между торцами заготовок оплавляет торцы. После нескольких повторных замыканий на торцах образуется слой жидкого металла.

При включении механизма осадки жидкий металл выдавливается из стыка, торцы приходят в соприкосновение и образуется сварное соединение.

Сварка оплавлением имеет преимущества перед сваркой сопротивлением: торцы заготовок перед сваркой не требуют тщательной подготовки, можно сваривать заготовки с сечением сложной формы и большой площадью, а также разнородные металлы.

Стыковую сварку оплавлением применяют для соединения заготовок сечением до 100 000 мм2. Типичными изделиями являются элементы трубчатых конструкций, колеса, кольца, рельсы, железобетонная арматура, листы, трубы.

Точечную сварку применяют преимущественно при соединении листовых заготовок. Свариваемые заготовки 2 собирают внахлестку (рис. 3), сжимают между двумя медными электродами 1 и пропускают электрический ток (от сварочного трансформатора). При протекании тока выделяется теплота в заготовках и электродах.

В связи с тем, что наибольшим электрическим сопротивлением обладает контакт между заготовками и электроды, как правило, охлаждаются водой и отводят теплоту с поверхности заготовок, происходит интенсивный нагрев металла только в месте контакта.

Здесь металл расплавляется и появляется жидкое ядро, которое затвердевает после выключения сварочного тока, образуя сварную точку 3.

Рис. 4. Стадии цикла и циклограммы точечной сварки:

а – без увеличения давления; б – с увеличением давления при проковке: 1 – сжатие деталей; 2 – включение тока; 3 – проковка; 4 – снятие давления с электродов

Кристаллизация металла происходит при сохраняющемся давлении электродов, что предотвращает образование в ядре точки дефектов усадочного характера- пор, трещин, рыхлот. В некоторых случаях давление в конце цикла сварки увеличивают, осуществляя «проковку» металла. Стадии цикла и циклограммы точечной сварки без проковки и с проковкой показаны на рис. 4.

Передсваркойконтактные поверхности деталей зачищают металлической щеткой, пескоструйной обработкой или травлением и обезжиривают растворителями. Это необходимо для обеспечения стабильного процесса, который зависит от постоянства контактного сопротивления.

Т очечная сварка в зависимости от расположения электродов по отношению к свариваемым заготовкам может быть двусторонней (рис. 3) и односторонней (рис. 5).

При односторонней сварке ток течет через верхний 3 и нижний 4 листы, но нагрев места контакта происходит только за счет тока, протекающего через нижний лист.

Для увеличения этого тока снизу располагают токопроводящую медную подкладку 5. Одновременно происходит образование двух точек.

Рис. 5. Односторонняя точечная сварка:

1 – сварочный трансформатор; 2 – электроды; 3 – верхняя заготовка; 4 – нижняя заготовка; 5 – медная подкладка

Рис. 6. Рельефная сварка:

1 – плоский электрод; 2 – заготовка; 3 – выступ

В многоточечных сварочных машинах, предназначенных для изготовления специальных сварных конструкций (элементы кузовов автомобилей, вагонов, различных панелей) одновременно сваривается несколько точек (или несколько десятков точек).

Режим точечной сварки может быть мягким и жестким. Мягкий режим характеризуется плавным нагревом заготовок сравнительно небольшим током. Время протекания тока обычно 0,5 – 3 с. Мягкие режимы применяют для сварки сталей, склонных к закалке.

Жесткие режимы осуществляют при малой продолжительности (0,1 – 1,5 с) тока относительно большой силы. Давление электродов также большое.

Эти режимы применяют при сварке алюминиевых и медных сплавов, обладающих высокой теплопроводностью, а также высоколегированных сталей с целью сохранения коррозионной стойкости: на мягких режимах возможно обеднение металла хромом за счет образования карбидов хрома.

Точечную сварку широко используют для изготовления штампосварных конструкций. Толщина свариваемых металлов в среднем составляет 0,5—8 мм. Для осуществления точечной сварки все более широкое использование получают сварочные роботы.

Разновидностью точечной сварки является рельефная сварка (рис.6), при которой между плоскими электродами 1 зажимают заготовки 2, на одной из которых заранее подготовлены (отштампованы) выступы 3. Эти выступы обеспечивают высокую плотность тока и концентрированный нагрев в месте контакта, который приводит к плавлению металла и образованию сварных точек.

Рис. 7. Схема шовной сварки:

1 – заготовки; 2 – сварочные электроды (ролики); 3 – сварной шов

Шовную сварку выполняют непрерывным швом вращающимися дисковыми электродами. На рис. 7 показана схема шовной сварки.

Заготовки 1, как и при точечной сварке, собирают внахлестку и зажимают между электродами 2, которые выполнены в виде роликов. Они передают усилие заготовкам, осуществляют подвод тока и перемещение заготовок.

При движении заготовок между роликами образуются перекрывающие друг друга сварные точки, в результате чего получается сплошной герметичный шов 3.

Шовную сварку можно осуществлять при одностороннем и двустороннем положении электродов.

Шовную сварку выполняют с непрерывным включением тока (рис. 8, а), с прерывистым включением тока (рис. 8, б), а также, впрочем, весьма редко, с прерывистым вращением роликов и остановкой их в момент включения сварочного тока.

Читайте также:  Трансформаторы: разновидности, схемы обмотки

Шовную сварку применяют при изготовлении различных емкостей с толщиной стенки 0,3 – 3 мм, где требуются герметичные швы – бензобаки, трубы, бочки, сильфоны и др.

Конденсаторная сварка представляет собой один из видов сварки запасенной энергией.

Энергия накапливается в конденсаторах при их зарядке от источника постоянного напряжения (выпрямителя), а затем в процессе разряда преобразуется в теплоту, используемую для сварки.

Эта теплота выделяется в контакте между соединяемыми заготовками при протекании тока, поэтому конденсаторную сварку можно отнести к способам контактной сварки.

Существуют два вида конденсаторной сварки: бестрансформаторная и трансформаторная (рис. 9). При бестрансформаторной ударной сварке конденсатор подключен непосредственно к свариваемым заготовкам. Разряд конденсатора происходит в момент удара заготовки 3 по заготовке 4. Разряд оплавляет торцы заготовок, которые свариваются под действием усилия осадки.

Рис. 8. Циклограммы шовной сварки:

а – непрерывное выключение тока; б – импульсное включение тока; 7 – сварочный ток; Р – давление; S – перемещение роликов; t – время

При трансформаторной конденсаторной сварке конденсаторы разряжаются на первичную обмотку сварочного трансформатора, во вторичной цепи которого находятся предварительно сжатые между электродами заготовки. Бестрансформаторная сварка используется в основном для стыковой сварки, трансформаторная – для точечной и шовной.

Преимуществами конденсаторной сварки являются: точная дозировка энергии (за счет изменения емкости конденсаторов и напряжения зарядки), малое время протекания тока (0,001 – 0,0001 с) при высокой плотности тока, возможность сварки материалов очень малых толщин (от нескольких микрометров до 1 мм), невысокая потребляемая мощность (0,2 – 2 кВА). Конденсаторную сварку применяют в основном в приборостроении, радиоэлектронике.

Рис. 9. Схемы конденсаторной сварки:

а – бестрансформаторная с разрядом на изделие; б – с разрядом на первичную обмотку трансформатора; 1 – пружина; 2 – защелка; 3 и 4 – заготовки; С – конденсатор; В – выпрямитель; Т – трансформатор

Источник: https://www.shtorm-its.ru/info/articles/tekhnologiya-kontaktnoy-svarki/

Контактная сварка: точечная, стыковая, электроконтактная

Одним из наиболее важных видов сварки является контактная сварка, которая была изобретена в прошлом веке, но до сих пор раскрывает заложенные в процессе выполнения возможности.

Сварочный аппарат

Применение метода

Применяют контактную сварку в тех сферах деятельности, где необходима работа мощного сварочного оборудования (до 500 кВт): самолетостроение, инструментальное дело, транспортная промышленность и другие крупные производства. Появление конденсаторных устройств значительно расширило зону применения метода. Теперь без контактной сварки не обходятся такие направления, как приборостроение, электроника, и даже микроэлектроника.

Основным преимуществом использования контактной сварки является время. Быстрота процесса положительно влияет на производительность при выборе данного метода. Меньшее коробление детали, обусловленное минимальной 3ТВ, также считается достоинством контактных соединений.

Сфера космических технологий также широко применяет технологию контактных соединений, в связи с отличными эксплуатационными характеристиками получаемых сварочных швов: высокая прочность, надежность и эстетичность.

Необходимо заметить, что квалификация сварщика почти не влияет на качество продукции, так как процесс практически полностью автоматизирован. В настоящее время с помощью контактной сварки реализуются толщины от сотых до десятых долей миллиметра. Величина может также измеряться в десятках миллиметров.

Соединение конструкционных элементов нефтепроводов и газопроводов не обходится без использования этого метода.

Технологический процесс

Существует три типа контактной сварки:

  • точечный;
  • стыковой;
  • шовный.

Каждый из них имеет более сотни разновидностей.

Точечное соединение

Сварка контактная точечная определяется ГОСТ, как тип соединения, при выполнении которого сварка деталей производится по отдельным точкам, с помощью двух электродов.

В ходе процесса, сварка оказывает давление на детали и сквозь них пропускается ток. Когда давление убирается, и детали остывают, получается литое ядро. Формирование сварного шва и определенные габариты ядра, вычисляются исходя из двух физических явлений:

  • увеличение температуры металла посредством сварочного тока;
  • теплоотвод из зоны сварочной ванны.

В зоне между электродами образуется тепло, выделяемое во время прохождения тока, и выводимое в массу детали и электрода. Соединение при точечной сварке образуется при точечном нагреве в зоне стыка за счет усилия на сжатие детали током и пластической деформации.

Если необходимо получить герметичное сварное соединение применяется шовная сварка (роликовая). Используется метод для сваривания бензобаков, резервуаров, емкостей и прочего.

Стыковое соединение

Стыковая контактная сварка имеет множество разновидностей. Например, сварка сопротивлением, когда к электродам прижимаются губки, обеспечивающие электрический контакт и фиксацию деталей между электродами. Электроконтактная сварка применяется, когда необходимо выполнить соединение элементов, имеющих маленькое сечение, диаметром не более 40 мм.

При этом формирование шва происходит без оплавления металла в месте соединения кромок деталей. Металл нагревается до пластичного состояния и выдавливается в град. Контактируют при этом нагретые твердые элементы материала.

Различие между стыковой и электроконтактной сваркой заключается в том, что в первом случае на первичной и вторичной обмотке трансформатора подача напряжения ведется только до контакта свариваемых торцов. В данном случае, оплавление обеспечивает соединение нужного качества. Потому что металл торцевой поверхности при взрыве жидких перемычек удаляется в ходе оплавлением.

Как сделать устройство для контактной сварки самостоятельно

Самодельная контактная сварка может обеспечить сваривание деталей выполненных из листовой стали (обычной и нержавеющей) толщиной от 0,8 до 0,9 мм, или соединение стальной проволоки с сечением около 1,5 мм.

Машина контактной сварки оснащена двумя узлами:

  • выносным сварочным пистолетом;
  • блоком питания.

Блок питание на различных схемах имеет одинаковое обозначение, а собирается посредством реле на тиристоре и сварочном трансформаторе. Электрод подключается к выводу низковольтной обмотки с помощью сварочного кабеля.

Второй вывод соединяется с самой габаритной из стыкуемых деталей. Первичная обмотка трансформатора подключается к сети посредством специально предусмотренного диодного моста и тиристора, который включен в диагональ.

Контактная сварка своими руками предусматривает сборку сварного пистолета посредством двух одинаковых по форме и размерам прочных изоляторов. Передняя часть устройства должна быть оснащена ламподержателем, переходником, микровыключателем. Заднюю часть составят выключатель подсветки, существующей между держателями и накладные винты.

При создании самодельной контактной сварки, в основе которой лежат конденсаторы, в роли аккумулятора выступает батарея электроконденсаторов.

Сборка подобной конструкции может увлечь тех, кто занимается микроэлектроникой. Источником постоянного напряжения при этом будет являться выпрямитель.

Электроэнергия, накапливаемая в процессе зарядки конденсаторов, расходуется при их разрежении, превращаясь в тепловую энергию.

Особенности процесса

Метод широко используется в различных сферах промышленности. Популярна контактная сварка при соединении крупногабаритных деталей, арматуры, железнодорожных рельс, элементов магистральных трубопроводов.

Связано это с сравнительно легким процессом начальной стадии оплавления, заключающимся в медленном сведении деталей между собой до появления контакта, появлению жидкости и паров металла. Затем, детали разводят, при этом тепло, выделяемое в зоне сплавления, распространяется по всей поверхности и внутрь детали.

В результате элементы нагреваются. Контакт создается до нагревания торцов. Основной характеристикой процесса является стабильность и непрерывность.

Популярна контактная сварка при выполнении кузовных работ. Обусловлено это высоким уровнем производительности и отсутствием деформации сварочного шва.

Источник: http://stroitel5.ru/kontaktnaya-svarka-tochechnaya-stykovaya-ehlektrokontaktnaya.html

Разновидности точечной сварки и области её применения

Точечной сваркой называют разновидность контактной сварки, в ходе которой детали подлежат соединению в отдельных местах (точках), ограничивающих по размерам нагревом электродов.

Они передают сжимающее усилие и проводят электроток. Положение точек зависит от того, как расположены электроды в используемой машине точечной сварки.

За один раз возможно сваривать как одну-две, так и несколько точек.

Посредством контактной точечной сварки традиционно сваривают изделия из цветных металлов или черных, как одного рода, так и разнородных.

Это могут быть заготовки различными или одинаковыми по толщинам, обработанные резанием или кованые изделия, катаные либо прессованные листы.

Наиболее эффективна точечная сварка, ценой вполне доступная, для сваривания узлов сельхозтехники, автомобильных и тракторных элементов, вагонов для железной дороги, деталей микроэлектроники, холодильников и бытовых предметов.

Особенности точечной сварки

При проведении сварки этим способом изделия собираются внахлест.

Затем их зажимают с определенным усилием между парой электродов из меди, связанными с трансформатором и проводящими электроток к месту сварки.

С включением трансформатора для точечной сварки с помощью кратковременного импульсного действия тока происходит нагрев заготовок с появлением в месте их контракта расплавленного участка или ядра точки.

Поверхности подвергаемых сварке изделий, соприкасаясь с медью электродов, поддаются нагреву не так быстро, как их внутренние слои. Поэтому нагревание длится до достижения состояния пластичности внешними слоями с образованием объемной точки металла и состояния расплава слоями внутренними.

Выключив ток, нужно еще определенное время сохранять усиление, необходимое для нормальной кристаллизации подвергшихся расплавлению материалов и предотвращения таких дефектов усадки, как рыхлоты с трещинами.

После отключения подачи токов со снятием давления можно увидеть результат воздействия аппарата точечной сварки – образовавшуюся литую точку сварного соединения.

Исходя из расположения электродов относительно подлежащих соединению изделий, такая сварка может выполняться с одной стороны либо быть двухсторонней. В последнем случае две либо больше заготовок зажимаются электродами установки точечной сварки.

Способ односторонней сварки предполагает распределение тока между нижней и верхней деталями. При этом часть тока, проводимая через нижнюю заготовку, осуществляет нагрев. Чтобы увеличить этот тока, предусмотрено использование специальной прокладки из меди.

Сварка односторонним методом позволяет соединять изделия сразу двумя точками в одно и то же время.

Как подготовить элементы?

Подготовка заготовок для обработки машиной контактной точечной сварки занимает важное место, поскольку от нее зависят стабильность операций и качество получаемых соединений. Изделие под сварку правится, зачищается, подгоняется, прихватывается либо собирается в специальном устройстве.

Значительной толщины пленки из оксидов удаляют при помощи особых роликов, имеющих косозубые насечки, пламенным нагревом, дробеметной, дробеструйной либо вакуум-дробной обработкой, накерниванием зоны сварки.

Заготовки, выполненные из низкоуглеродистой стали, необходимо обезжирить бензиновыми, ацетоновыми или другими растворителями масел с последующей обработкой травлением, щетками, абразивными и шлифовальными приспособлениями. Также обработанные поверхности подвергают пассивировке.

Заготовки могут быть зачищены только в месте нахлеста или полностью. После процедур механической зачистки с них следует удалить окислы и пыль с абразивными частицами.

Изделия, имеющие покрытие металлом, обычно зачистке не подвергают, их прихватывают обычной сваркой. Малогабаритные узлы и заготовки можно варить без прихваток, жестко зафиксировав их в клещах для точечной сварки.

На крупных изделиях возможны прихватывание дуговой сваркой и последующая вырубка участков наложения прихваток.

Оборудование для точечной сварки

Важнейшими параметрами режима воздействия аппаратов точечной сварки споттер служат время проведения тока с его плотностью, а также усилие сжатия.

Выбор этих характеристик определяется при учете особенностей применяемой аппаратуры по картам технологий, таблицам примерных режимов и опытным работам. Данную сварку проводят как на мягком, так и на жестких режимах.

Первый отличается относительно небольшой плотностью токов, значительной продолжительностью цикла сварки при малом давлении. Его чаще всего применяют для сварки низколегированной либо углеродистой стали.

Для жестких режимов станка точечной сварки характерны большая плотность тока, значительное давление, а также небольшая продолжительность цикла сварки. Он применим для сварочных работ с медными, алюминиевыми сплавами и стойкими к коррозии сталями.

Читайте также:  Люнет для токарного станка: строение и использование

Технология точечной сварки

Соединение сваркой разнородных материалов лучше производить на мягких режимах. В этом случае облегчается получение надежного соединения за счет возможности регулировки параметров. Усиление нагрева с уменьшением теплоотведения в материал способствует симметричности расположения ядра. Это достигается за счет меньших теплопроводности и диаметра электродов.

Схемами точечной сварки предусмотрено осуществление всего процесса в четыре стадии. В первой происходит зажим соединяемых частей между электродами для точечной сварки. Вторая стадия предполагает на включенном токе разогрев места соединения до температуры расплавления с формированием литого точечного ядра.

На третьей и четвертой стадиях увеличивается сила сжатия на включенном токе для образования структур в сварной точке с последующим освобождением электродов от усилия. С помощью данного способа сварки производятся штампосварные соединения. Также незаменим он в присоединении сварными точками отдельных штампованных изделий.

И то, и другое существенно увеличивает производительность работ и упрощает процессы изготовленных целых сварочных узлов.

Необходимостью удаления поврежденных деталей в ходе ремонтных работ обусловлена потребность в высверливании точечной сварки. Оно применяется всякий раз, когда нужно аккуратно высверлить места точечного соединения неисправной части с основным изделием.

Один из способов удаления сварки заключается в накернировании и засверливании тонким сверлом по металлу. Использование специального сверла для точечной сварки позволяет обойтись без этих операций.

При этом не только отпадает необходимость накернивания и предварительного засверливания, но и на втором листе металлического соединения не остается сквозных отверстий от удаленных сварных точек.

Принцип и технологию такого высверливания удобно применять в кузовных и любых других работах, когда требуется замена элемента, прикрепленного болтами, саморезами иди заводской точечной сваркой.

Источник: https://promplace.ru/svarka-metallov-staty/tochechnaya-svarka-1531.htm

Особенности точечной сварки

Точечная является разновидностью контактной сварки. Она отличается от других видов сварки тем, что деталь соединяется не продолжительным сварочным швом, а одной или несколькими сварочными точками.

Это и есть основной особенностью данного вида сварочного соединения. Точечная сварка своими руками производится совсем не сложно.Промышленность, строительство и бытовое хозяйство пользуется точечной сваркой с 1877 года.

Главное изучить основные нюансы и аспекты данного типа.

Понятие точечной сварки

Контактная сварка — процесс образования неразъёмного сварного соединения путём нагрева металла проходящим через него электрическим током, поступающего от электродов, и пластической деформации зоны соединения под действием сжимающего усилия.

Данный вид соединения производится по следующим параметрам:

  • время воздействия – 0,2-2,0 секунд;
  • высокий ток при работе – больше тысячи ампер;
  • маленькое сетевое напряжение – 2-5В;
  • сила сжимающего места соединения – до нескольких сотен килограмм;
  • минимальная зона расплавления, обеспечивающая точечную сварку.

Точечная сварка в промышленности применяется гораздо чаще, чем другие разновидности контактного способа (шовная, стыковая). Такая популярность связана с широким спектром применения и очень выгодными параметрами самого процесса.

Прочность скрепления зависит от многих факторов. Во-первых,  площадь точечной поверхности, то есть самой точки (ядра). Во-вторых, сила сварочного тока и время его воздействия на детали.

В-третьих, усилия сжатия свариваемых деталей.  Такой метод применяется для изделий разной прочности и толщины, например, от 0,01 до 20-30 миллиметров.

Как правило, такой метод применяют на стыковке деталей «внахлест».

Технология точечной сварки

Технология данного вида контактной сварки заключается в следующем: детали, которые необходимо соединить между собой, устанавливаются в необходимое положение и закрепляются, чтобы не съезжали при сваривании.

  Далее, с двух сторон, к этим деталям подводится ток через электроды,тем самым, в местах контакта материала и электродов, создается высокая температура  — металл начинает плавиться. При этом образуется сварочное ядро (схоже со сварочной ванной при иных ).

Его диаметр обычно колеблется от нескольких миллиметров до 1,5-2 сантиметров.

Заготовки из стали низкого качества могут поддаваться соединению без расплавления ядра, но при этом соединение будет считаться низкого качества. Специалисты рекомендуют новичкам учиться и набивать руку именно на таких заготовках.

Рассмотрим пошаговую инструкцию и все этапы процесса соединения деталей:

  1. Подготовительный этап, который включает три основных аспекта:
  • подготовка деталей к сплавлению. При этом кромки зачищаются для сцепления с целью удаления остатков лакокрасочных изделий или масляных пятен. После этого их необходимо зафиксировать (для этого используют ручные тиски или струбцины) для спаивания между электродами;
  • подготовка рабочего места в соответствии со всеми нормами, правилами и требованиями безопасности;
  • подготовка сварщика. Перед началом работы непременно нудно надеть специальный костюм и маску для защиты глаз от искр, которые могут причинить ожоги.
  1. Непосредственный сварочный процесс, при котором под воздействием высокой температуры, создаваемой электродами, металл плавится. Для этого мастер фиксирует деталь между электродами и подает ток, за счет которого образуется энергия, плавящая металл. Когда появилось ядро, ток снимают, и детали крепко сжимаются между собой, сварочной ядро кристаллизуется (застывает) и образует точечную сварку.

Благодаря простоте процесса, для того, чтобы совершать точеную сварку своими руками, не нужно быть высококвалифицированным сварщиком. Главное понимать саму сущность сварки.

Нагрев осуществляется за счет импульса, образующегося сварочным током. Он расплавляет металл (точечно) и образует так называемое сварочное ядро. Затем импульс пропадает, а изделие еще несколько секунд находится под давлением.

За это время оно успевает застыть и скрепиться.

Важно: сжимание происходит в момент подачи импульса, для того, чтобы избежать разбрызгивания.

Возможные дефекты

Если вы решили в домашних условиях заниматься сваркой, тогда следует ознакомиться с возможными дефектами и их происхождением, чтобы избежать подобных ошибок.

Рассмотрим самые распространенные дефекты, которые могут случиться во время точечной сварки:

  • полный или частичный непровар может возникнуть из-за некачественных электродов, которые стоит заменить новыми, малой силой тока, или чрезмерным сжатием. Рассмотреть данную оплошность можно двумя способами: при внешнем осмотре или при использовании специального прибора для контроля сварки (радиационного или ультразвукового;
  • трещины во время сварки могут возникать из-за сильного тока или некачественно зачищенных изделий, что из-за возникающего сопротивления нарушает температурный режим сварки;
  • разрывы у кромок при сварке внахлест чаще всего происходят из-за того, что мастер слишком близко от края детали располагает сварную точку. То есть, необходимо рассчитывать так, чтобы нахлеста хватило на качественное соединение;
  • внутренний выплеск – это такой дефект, при котором расплавленный металл «вылазит» за пределы ядра и создает между заготовками зазор. Основной причиной такой ошибки является длительный импульс или слишком большой ток, из-за чего ядро чрезмерно расплавляется. Чтобы этого избежать, важно ровно устанавливать электроды и контролировать силу тока. Чтобы аппарат настроить, рекомендуется несколько точек попробовать на черновом материале;
  • наружный выплеск – это дефект, при котором расплавленная масса «вылазит» наружу. Он возникает в результате недостаточного сжатия деталей. То есть, отсутствует момент ковки, позволяющий соединить заготовки.
  • вмятины от электрода остаются из-за малого диаметра электрода или чрезмерного сжатия. Из-за неправильно установленных проводников может увеличиваться зона расплавления, из-за чего возникают дефекты;
  • прожог – самая частая ошибка, возникающая у начинающих мастеров при любом виде сварки. Она случается по нескольким причинам: малое усилие сжатия электродов, загрязненная поверхность заготовок или кончика проводника;
  • смещение ядра происходит из-за неправильно установленных электродов по отношению у заготовкам;
  • трещины внешние и внутренние бывают от сильного тока и длительного импульса или же от несвоевременного ковочного усилия.

Преимущества и недостатки метода

Как делать точечную сварку – разобрались. Сейчас рассмотрим основные достоинства и недостатки, которыми характеризуется данный вид соединения. К преимуществам такого метода относятся следующие факторы:

  • в сравнении с другими типами и технологиями этот метод считается самым «культурным» и гигиеничным способом;
  • нет необходимости в процессе применять дополнительные материалы – газы, флюсы и так далее;
  • нет отходов и шлаков;
  • в сварке без газа не выделяются вредные вещества, которые наносят вред здоровью мастера;
  • высокий уровень коэффициента полезного действия;
  • возможность использования высокопроизводительных многоточечных машин, сборочно-сварочных поточных машин, агрегатов и роботизированных комплексов контактной сварки;
  • высокое качество соединений за краткий промежуток времени.

Если соблюдать вне нормы и правила работы с точечной сваркой, тогда можно получить высококачественное соединение отличающееся аккуратностью и надежностью. По статистике, новичкам намного проще научиться точечной сварке, чем набить руку выкладывать различные виды швов.

Кроме преимуществ, есть и ряд недостатков, с которыми необходимо ознакомиться:

  • очень сложно реализовать надежное скрепление при плавке разных металлов, точнее, практически невозможно;
  • при подаче сильного импульса происходит разбрызгивание металла;
  • сложность конструкции сварочной головки и механизма сжатия при одновременной сварке нескольких точек;
  • усложнение конструкции электродов и их эксплуатации, особенно при многоточечной сварке.

Аппарат для точечной сварки

Аппарат для точечной сварки выглядит следующим образом и включает в себя такие детали:

  • трансформатор тока;
  • сварочный зажим;
  • включающее и выключающее реле;
  • механизм сжатия электродов;
  • регулятор силы и длительности подачи тока.

У тех аппаратов, которые предназначены для домашнего и бытового применения регулятор силы может отсутствовать. Тогда мастер сам регулирует силу сжатия проводников и время воздействия на деталь, отталкиваясь от своего опыта и полагаясь на свои умения и навыки.

В процессе работы очень важно контролировать состояние электродов. Если их диаметр увеличивается, тогда уровень тепла в месте воздействия на ядро уменьшается.

Диаметр электрода должен совпадать в диаметром сварной точки. Обычно проводники изготавливаются из жаропрочных материалов – меди, бронзы.

Но под воздействием высокой температуры со временем они теряют свою форму, поэтому важно их своевременно менять.

Оборудование для точечной сварки

Рассматривая оборудование, можно провести следующую классификацию:

  • по способу передвижения – мобильные, подвесные, стационарные;
  • по способу механизации – ручной и автоматический;
  • по расположению электродов – параллельно и друг напротив друга.

Для производственных целей необходимо использовать высококлассное оборудование. Для дома отлично подойдет и самодельная точечная сварка, которую можно собственноручно сделать из любого электрического прибора. Ниже в видео подробно рассказывается, как самостоятельно соорудить сварочный аппарат.

Источник: https://svarkaed.ru/svarka/obuchenie-svarke/osobennosti-tochechnoj-svarki.html

Контактная сварка

Виды сварки – Контактная сварка

Контактная сварка — один из наиболее распространенных и быстро разбивающихся способов получения неразъемных соединений самых разнообразных конструкционных материалов в широком диапазоне толщин и сечений. В настоящее время ~30 % всех сварных соединений выполняются с помощью контактной сварки, а по существующим прогнозам к 2000 г. доля этого способа в мировом сварочном производстве достигнет 40 %.

Широкое использование и перспективы контактной сварки в промышленности, особенно в массовом производстве, обусловлены следующими причинами:

1. Высокой технико-экономической эффективностью и, в частности, очень высокой производительностью процесса, намного превышающей производительность других способов сварки.

2. Возможностью легкой механизации, автоматизации и роботизации процесса сварки

3. Весьма благоприятным термодеформационным циклом, обеспечивающим достаточно высокое качество соединений большинства конструкционных материалов.

4. Высокой культурой и хорошими гигиеническими условиями технологического процесса.

Контактная сварка — процесс образования неразъемных соединений конструкционных металлов в результате их кратковременного нагрева электрическим током и пластического деформирования усилием сжатия, со стороны электродов.

Читайте также:  Виды антикоррозийных покрытий для изделий из металла

Согласно ГОСТ 2601—84 контактная сварка принадлежит к термомеханическому (термодеформационному) классу способов сварки.

Соединение в этом случае, как и при других способах сварки, образуется за счет формирования металлических связей между атомами в зоне контакта соединяемых деталей.

При этом затрачивается тепловая и механическая энергия для обеспечения физического контакта и активации соединяемых поверхностей.

Контактная сварка — электротермодеформационный процесс (ГОСТ 2601—84), так как нагрев осуществляется проходящим током за счет выделения теплоты на электрических сопротивлениях разных участков соединения, в частности в общем случае и на контактных сопротивлениях, что послужило причиной появления термина «контактная сварка». В других странах (США, Япония, Великобритания) для определения этого способа получения соединений используют термин «сварка сопротивлением», который также подразумевает нагрев металла импульсным проходящим током — за счет действия внутренних источников теплоты. Как и при большинстве других наиболее распространенных способах сварки, например дуговой, металл нагревают до расплавления (точечная сварка, стыковая сварка оплавлением и т. п.), что гарантирует удаление поверхностных пленок и образование физического контакта по заданной площади.

Значительная пластическая деформация зоны сварки позволяет получать высокие механические свойства соединений разных конструкционных металлов, обеспечивает надежный электрический контакт между деталями, устойчивость процесса расплавления металла и защиту его от взаимодействия с окружающей средой (контактная точечная и шовная сварка).

Известные способы сварки классифицируются по ряду технических и технологических признаков (ГОСТ 19521—74):

1) по технологическому способу (форме) соединений — точечная, шовная, стыковая;

2) по конструкции соединения: виду сборки деталей — нахлесточные и стыковые (торцевые) соединения, предусмотренные выступы на одной из деталей — рельефная сварка;

3) по предельному состоянию металла в зоне сварки — с расплавлением металла и без расплавления;

4) по числу одновременно выполняемых соединений (швов) — одно- и многоточечная, сварка одним или сразу несколькими швами, одновременная сварка одного или нескольких стыков;

5) по способу подвода и роду сварочного тока — наиболее распространенные способы с кондукционным (контактным) подводом тока или с индукционным нагревом, характерным в основном для стыковой сварки; сварка импульсом переменного тока или униполярным импульсом (изменяющийся во времени ток одной полярности);

6) по применению дополнительных защитных или связующих компонентов (грунтов, эмалей, клеев, припоев) —сварка по слою грунта, клеесварные и сварнопаяные конструкции.

Особенности способа контактной сварки

Контактную сварку (табл. XIII.1, рис. XIII.1) осуществляют с применением нагрева и давления, при этом для нагрева используют тепло, выделяющееся в контакте свариваемых частей при прохождении электрического тока.

XIII.1. Отличительные особенности основных видов контактной сварки

Надлежащее качество сварных соединений для большинства видов контактной сварки (кроме стыковой сопротивлением) достигается нагревом металла в зоне сварочных контактов до расплавления, а прилегающих к этой зоне участков металла — до пластического состояния, обеспечивающего необходимую деформацию их под действием усилия сжатия.

Количество тепла Q, выделяемого в зоне сварки, можно определить по формуле Ленца — Джоуля

Q=I2Rt

где I — сварочный ток. A; R — общее активное сопротивление зоны сварки, Ом; t — время действия тока, с.

Сопротивление R в зоне сварки обычно незначительно. Время действия тока I назначают минимальным (секунды, доли секунд), с тем чтобы избежать излишних тепловых потерь. Нагрев при контактной сварке достигается применением в сварочной цепи тока I больших значений (150 кА и более) при этом напряжение обычно не превышает 30 В.

Контактная сварка отличается высокой производительностью, возможностью широкой механизации и автоматизации рабочих процессов, а также существенным снижением расхода основных и вспомогательных материалов. Указанные преимущества этого способа сварки с наибольшей эффективностью проявляются при массовом и крупносерийном производстве однотипных изделий в стационарных условиях работы (в цехах, мастерских).

К особенностям контактной сварки, затрудняющим применение ее в условиях строительства, следует отнести большие установочные мощности контактных машин (до 1000 кВ А и более), вызывающие необходимость подключения их к отдельному фидеру электрической сети; узкая специализация машин по видам сварных соединений (стыковые, точечные и др.); необходимость в большинстве случаев доставки к машинам заготовок изделий или конструкций; сложность контроля качества сварных соединений.

Области применения контактной сварки в промышленном строительстве

Примерный перечень металлопродукции с соединениями, выполняемыми различными видами контактной сварки, приведен в табл. XIII.2.

XIII.2. Перечень металлопроката с соединениями, осуществляемыми контактной сваркой

В настоящее время в промышленном строительстве контактную сварку применяют при изготовлении в стационарных условиях сеток, каркасов и других арматурных изделий железобетонных конструкций.

Точечную сварку используют при изготовлении конструкций из открытых профилей стального проката с толщиной стенок до 6 мм.

Стыковой сваркой соединяют короткоразмерные элементы из отходов проката для последующего его применения в конструкциях. Рельефная сварка осуществляется редко.

При изготовлении алюминиевых конструкций и изделий предусмотрена стыковая сварке угловых соединений рам окон и витражей из профильных элементов. Стыковой сваркой соединяют медные и алюминиевые провода (кабели) при электромонтажных работах.

В дальнейшем представляется целесообразным (с учетом использования существующего сварочного оборудования) более широкое распространение основных видов контактной сварки в промышленном строительстве для выполнения следующих работ:

стыковая сварка — угловые соединения рам окон, витражей и каркасов дверей из стальных и алюминиевых профилей; стыковые соединения различных труб; соединение стержневых элементов из профильного металла, включая использование их короткоразмерных отходов; производство режущего инструмента из разнородных сталей и сплавов;

точечная сварка — приварка листовых элементов из сталей или алюминиевых сплавов к окаймляющим каркасам трехслойных стеновых панелей; соединение элементов стальных несущих и ограждающих решетчатых конструкций (секции ферм, мачт, башен и др.) при толщине металла каждого элемента до 16 мм; приварка листовых элементов к каркасам лестниц и площадок;

шовная сварка — выполнение плотно-прочных швов при изготовлении секций тонкостенных труб, газовоздуховодов и других изделий из листового металла толщиной до 3 мм.

Подготовка элементов к контактной сварке

Перед сваркой обрезают, правят и взаимно подгоняют соединяемые элементы, а также очищают поверхности металла от ржавчины, окалины, смазки и других загрязнений.

Для стыковой сварки сопротивлением необходима тщательная обработка и подгонка торцов перпендикулярно оси заготовок без местных зазоров. При сварке труб торцы их совместно фрезеруют одной дисковой фрезой с последующей зачисткой напильником.

Для стыковой сварки оплавлением допускается менее тщательная подготовка торцов. Элементы можно нарезать на пресс-ножницах, механической пилой или кислородной резкой, после чего поверхности реза очищают от окалины и шлака.

Обработка элементов для точечной и шовной сварок обычно заключается в обрезке кромок (при наличии неровностей), правке и очистке листового металла в зоне соединения.

Очистку металла под контактную сварку осуществляют металлическими щетками (ручными или приводными), песко- или дробеструйными аппаратами, а также травлением в растворах кислот с последующей нейтрализацией в щелочной среде и промывкой в проточной воде.

При подготовке элементов, подлежащих стыковой сварке, очищают торцевые поверхности и участки металла в местах закрепления в зажимах сварочной машины. Листовые элементы перед точечной и роликовой сваркой очищают с двух сторон на ширине не менее 30—50 мм в местах расположения сварных точек или швов.

При недостаточно очищенной поверхности металла заметно снижается качество сварных соединений и одновременно резко повышается износ электродов машин.

Во избежание возникновения дефектов, при сборке листовых элементов под точечную или шовную сварку, следует обеспечивать плотное взаимное прилегание их, не допуская зазоров более 0,5 мм на длине 100 мм.

  • стыковая сварка,
  • точечная сварка,
  • рельефная сварка,
  • шовная сварка

Источник: https://www.autowelding.ru/index/0-31

Контактная сварка – преимущества и параметры процесса – Ковка, сварка, кузнечное дело

Сварочные работы – это на сегодняшний день самый распространённый способ соединения и резки металлов. Способы проведения сварочных работ бывают различными, как и оборудование, которое при этом применяется. Для работы с более мелкими деталями и изделиями ещё в XIX веке был разработан метод контактной сварки.

Суть этого метода заключается в том, что изделия соединяются между собой при нагреве металла электрическим током, проходящим через него в определённой сварочной зоне.

Качество места сваривания зависит от качества подготовленной поверхности, силы тока сварки, длительности электрического импульса, прикладываемого к месту сварки и силы сжатия свариваемых деталей.

Главный показатель качества контактной сварки – размер ядра точки сваривания. Так как контактная сварка в основном применяется для соединения листового материала, то размер ядра сварки определяется, как три толщины самого тонкого свариваемого листа.

Толщина свариваемых таким способом изделий может изменяться в диапазоне от 0,002 мкм в электронном приборостроении до 20 мм при возведении металлических конструкций в машиностроении, кораблестроении, и других областях промышленности, а также при возведении и ремонте сооружений и зданий бытового и промышленного назначения.

При контактной сварке результат работы обычно контролируется визуально или методом разрушения. Преимущества контактной сварки очевидны:

  • 1. Скорость работ (производительность) – одна сварная точечная операция длится 0,02-1,0 сек.
  • 2. Небольшой расход материалов.
  • 3. Надёжность соединения и высокое качество при малом количестве контролируемых процессов.
  • 4. Экологичность сварных работ.

Любая контактная сварка по способу производства работ может разделяться на стыковую сварку, шовную и точечную сварку изделий. Современный аппарат контактной сварки представляет собой передвижное, стационарное или подвесное устройство. Рабочий ток в таком оборудовании может быть переменным или постоянным.

Используемые электроды для контактной сварки служат для того, чтобы вторичный контур, образующийся из свариваемых деталей, замкнулся, и образовалось ядро свариваемой точки. Дополнительные функции электродов при шовной сварке – перемещение и удерживание свариваемых деталей в процессе сварки.

Электроды для точечной контактной сварки – инструмент быстроизнашивающийся. Для производства таких электродов применяется медь и медные сплавы.

Это может быть бронза с включением хромоциркония, кадмиевая бронза, бронза хромистая, бронза, легированная добавлением никеля, титана и бериллия или кремний-никелевая бронза.

Один из видов контактной сварки — точечная сварка. При такой сварке детали соединяются между собой по ограниченным местам касания. Детали зажимаются между электродами, соединёнными с источником импульсного тока.

Для зажима деталей применяются клещи для контактной сварки, которые являются переносным приспособлением. Переносные устройства для контактной точечной сварки называются по разному — скобы, клещи, пистолеты для точечной сварки и т.д.

В основном это переносные сварочные клещи с пневматическим давлением, но для более тонких работ (например, в автомобилестроении) используются специальные пистолеты.

Как работает аппарат точечной сварки?

Для этого способа сварки характерен нагрев места стыка деталей электрическим током, проходящим через них. Обязательно усилие сжатия свариваемых деталей. Детали соединяются и удерживаются клещами или прижимаются друг к другу пистолетом.

И клещи, и пистолет соединяются со сварочным аппаратом шлангами, что позволяет передвигаться вдоль свариваемой конструкции во время работы. Под воздействием электрического тока в месте контакта деталей металл плавится и образуется ядро сварной точки диаметром до 20 мм – в зависимости от проводимых работ.

Использование специальной аппаратуры позволяет создавать до 600 точечных соединений в минуту.

Источник: https://kovka-svarka.net/kontaktnaia-svarka/

Ссылка на основную публикацию
Adblock
detector