Особенности сварки неплавящимся электродом в среде защитного газа

Сварка неплавящимся электродом в среде защитного газа

Сварка неплавящимся электродом использует тепло, образующееся при горении электрической дуги между электродом и основным металлом. Присадочный материал, если требуется, подается отдельно в виде проволоки, которая также плавится от горения дуги.

Сварка неплавящимся электродом используется для соединения изделий из нержавеющей стали, алюминия, титана и многих других металлов и сплавов, не содержащих железо. Сварщик вручную контролирует движение горелки (держатель с неплавящимся электродом) и проволоки. Горелки небольших размеров охлаждаются воздухом, большие оборудованы системой водяного охлаждения.

Защитный газ, образующий вокруг дуги облако, защищает металл от воздуха и других пагубно влияющих материалов. Газ подается через сопло держателя, окружающего электрод.

Нагрев изделия при сварке может контролироваться путем изменения величины электрического тока и длины дуги. Величина электрического тока выбирается в зависимости от диаметра электрода, толщины и вида свариваемого металла.

Схема сварки неплавящимся электродом в среде защитного газа

Сварка плавящимся электродом в среде защитного газа

В этом виде сварки дуга, являющаяся источником тепла, горит между основным металлом и электродом. Зона горения дуги защищается с помощью газа. Это очень распространенный способ сварки. В качестве защитного газа используется углекислый газ, аргон или гелий.

Электрод (сварочная проволока) подается с помощью специального устройства – механизма подачи. На горелке имеется выключатель, нажатие на который включает и выключает подачу проволоки и течение газа. В этом процессе используется источник постоянного тока, поддерживающий величину сварочного тока неизменной.

Выбранное значение сварочного тока устанавливается на сварочном аппарате.

Перед началом сварки сварщик должен выбрать размер электрода, установить напряжение, интенсивность газового потока, интенсивность подачи электродной проволоки.

Схема сварки плавящимся электродом в среде защитного газа.

Контактная точечная сварка

Контактная точечная сварка основана на прохождении электрического тока через свариваемый металл. Сопротивление току разогревает металл до температуры сварки. Соединение производится между двумя или более деталями, расположенными внахлест.

Это процесс хорошо автоматизируется. Точечная сварка используется для соединения деталей автомобильных кузовов, кабин и других сборок листовых изделий. На схеме представлена машина для точечной сварки.

Сварка производится двумя электродами, сдавливающими свариваемые детали между собой. Электроды изготовлены из специального медного сплава, который может передавать высокие токи и способен выдерживать большие нагрузки при сдавливании деталей.

Электроды для сварки тонких металлов могут иметь воздушное охлаждение, а для сварки толстых металлов – водяное охлаждение.

В этом процессе контролируются сила тока, давление электрода, продолжительность действия электрического тока.

Схема контактной точечной сварки.

Рельефная сварка

Рельефная сварка похожа на контактную точечную сварку. В этом процессе также используют сопротивление сварочному току для создания необходимой для сварки температуры.

Перед сваркой на одной из свариваемых деталей подготавливают выпуклости или проекции заданного размера и формы. Детали крепятся к электродам, электроды сближаются и детали касаются друг друга только выпуклостями.

Электрический ток концентрируется на точках контакта. Эти точки сплавляются вместе.

Время действия и величина тока, давление, прикладываемое к деталям, – основные составляющие сварочного процесса.

Схема проекционной сварки.

Контактная шовная сварка

Контактная шовная сварка – одна из разновидностей точечной сварки. Она применяется при производстве сварных емкостей и герметичных изделий, не пропускающих воздух или пар. Электроды выполнены в форме роликов.

Изделия, предназначенные для соединения, протягиваются между ними. Таймер контролирует циклы действия электрического тока, которые очень быстро повторяются.

Быстрое повторение создает серию накладывающихся друг на друга точек, которые образуют непрерывный сварочный шов.

Машины для этого сварочного процесса в основном автоматические.



Источник: https://infopedia.su/7xb62e.html

Галина Серикова — Сварочные работы. Практический справочник

Дуговая сварка в среде защитных газов получает все большее распространение, поскольку отличается рядом технологических достоинств:

– обеспечивает высокую производительность труда и степень концентрации тепла источника питания, поэтому можно существенно уменьшить зону термического воздействия;

– дает возможность соединять металлы без использования электродных покрытий и флюсов, т. е. исключает такую стадию сварки, как очистка швов от шлака;

– позволяет автоматизировать и механизировать процесс сваривания и вести его в разных пространственных положениях;

– применяется при работе как со сталями, так и с цветными металлами и их сплавами.

Сварка в среде защитных газов является общим названием различных видов дуговой сварки, в процессе которой в зону горения сварочной дуги через сопло горелки подают струю газа. Это могут быть инертные газы (аргон, гелий), активные газы (углекислый газ, азот, кислород, водород) и их смеси, в частности:

– аргон, углекислый газ и кислород. Эта смесь используется при сварке сталей плавящимся электродом, минимизирует потери металла на разбрызгивание, стабилизирует горение сварочной дуги, устраняет пористость и дает шов хорошего качества;

– аргон и кислород, применяющиеся для сварки низкоуглеродистых и легированных сталей. При сварке капельный перенос металла сменяется струйным, благодаря чему производительность возрастает, а потери на разбрызгивание металла сокращаются;

– аргон и углекислый газ. Область применения данной смеси такая же, как и у предыдущей. Ее использование препятствует образованию газовых пор в шве, стабилизирует горение дуги и способствует формированию качественного сварного шва.

В стальных баллонах может содержаться как чистый газ (для контроля его расхода предназначен специальный прибор – ротаметр, а подача регулируется отдельным редуктором), так и их смеси.

Классификация сварки в среде защитных газов основывается на следующих признаках:

– по применяемому в процессе работы газу (активному или инертному);

– по способу защиты (отдельным газом или смесью);

– по используемому электроду (плавящемуся или неплавящемуся);

– по характеру сварочного тока (постоянному или переменному).

Наибольшее распространение в последнее время получила сварка плавящимся и неплавящимся электродами в среде инертных газов.

Сварка неплавящимся электродом представляет собой процесс, в котором источником тепла служит дуга, зажигаемая между вольфрамовым или угольным электродом и металлом изделия (рис. 81).

Рис. 81. Схема горения сварочной дуги в среде инертных газов: 1 – электрод; 2 – присадочная проволока; 3 – свариваемый металл; 4 – шов; 5 – дуга; 6 – струя газа; 7 – горелка; 8 – воздух

Наибольшего проплавления свариваемого металла добиваются при использовании постоянного тока прямой полярности. При этом источники питания должны обладать крутопадающей вольт-амперной характеристикой, например ВДУ-601, ВСВУ-300 и др.

Для сварки на переменном токе применяют стабилизатор горения дуги ВСД-01. Сварочный процесс ведут как с присадками, так и без них.

Помимо источника питания, к оборудованию, необходимому для сварки на постоянном токе, относятся:

– сварочные горелки (табл. 29);

Таблица 29. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ ТИПОВ СВАРОЧНЫХ ГОРЕЛОК

– устройство для первоначального возбуждения дуги (ОСППЗ-300 М, ОСПЗ-2 М и др.). Необходимость в нем объясняется тем, что защитные газы, поступившие в зону горения сварочной дуги, снижают температуру дугового промежутка, вследствие чего возбуждение дуги затрудняется;

– аппаратура для управления сварочным циклом.

Дуговая сварке в среде аргона обеспечивает высококачественный шов (особенно при соединении высоколегированных тонколистовых сталей), поскольку надежно защищает рабочую зону от воздействия атмосферного воздуха.

Для сварки стали толщиной до 1 мм используют ток прямой полярности, при толщине до 3 мм – обратной полярности (варить сталь толщиной более 3 мм экономически невыгодно). Режимы, на которые можно ориентироваться при сварке, приведены в табл. 30.

Таблица 30. ПРИМЕРНЫЕ РЕЖИМЫ АРГОНОДУГОВОЙ СВАРКИ НЕРЖАВЕЮЩЕЙ СТАЛИ

При сварке плавящимся электродом дуга возбуждается между концом проволоки, которую подают в зону горения дуги с помощью особого механизма со скоростью, совпадающей со скоростью ее расплавления, и свариваемым металлом. Жидкий металл электродной проволоки поступает в сварочную ванну и формирует шов.

Если применяется плавящийся электрод, сварку ведут короткой или длинной дугой. В первом случае расплавленный электродный металл переносится мелкокапельным способом, что позволяет снизить величину сварочного тока, уменьшить потери при разбрызгивании, обеспечить стабильный сварочный процесс.

Во втором случае возможны разные способы переноса расплавленного металла – мелко-, крупнокапельный, струйный. При этом достаточно сложно поддерживать струйный перенос металла при работе в аргоне или его смеси с гелием.

Читайте также:  Алмазный диск для болгарки по бетону и железобетону

Стабильность сварки возрастает при добавлении к аргону 5 % кислорода либо 20 % углекислого газа.

Сварка в углекислом газе производится в любых пространственных положениях (рис. 82) и используется для углеродистых и легированных сталей.

Преимуществами данного способа являются высокая производительность, широкий диапазон допустимой толщины материала и экономичность.

Но на открытом воздухе сварку в среде углекислого газа практически не применяют, поскольку в таких условиях трудно обеспечить защиту сварочной ванны.

Рис. 82. Схема дуговой сварки в среде углекислого газа (А – вылет электродной проволоки): 1 – электродная проволока; 2 – струя защитного газа; 3 – токоподводящий мундштук; 4 – сопло; 5 – подающий механизмСварку в углекислом газе ведут разными способами – автоматическим, полуавтоматическим или плавящимся электродом.

Ниже приведены ее параметры:

1. Величина, род и полярность тока. Сварку осуществляют при постоянном токе (переменный не подходит, поскольку он не обеспечивает стабильность горения дуги и дает плохой сварной шов) обратной полярности, чтобы избежать возникновения пористости, характерной для сварки при прямой полярности.

Источник питания должен иметь жесткую или возрастающую внешнюю характеристику. Величина сварочного тока и диаметр электродной проволоки определяются толщиной металла и пространственным положением шва. От величины тока зависят глубина проплавления и производительность сварки.

Для регуляции этого параметра изменяют скорость подачи электродной проволоки.

2. Напряжение на дуге. При повышении напряжения наблюдается уширение сварного шва, а качество его формирования улучшается.

Но одновременно с этим возрастают потери кремния и марганца, разбрызгивание расплавленного металла и чувствительность дуги к магнитному дутью. С понижением напряжения сварной шов формируется хуже.

Поэтому важно соблюсти баланс между напряжением и величиной тока, диаметром и составом электродной проволоки. Как правило, напряжение на дуге не превышает 22–28 В.

3. Диаметр, наклон, скорость подачи и вылет электродной проволоки. Для сварки применяют проволоку Св-08 Г2 С, в состав которой входят марганец и кремний, играющие роль раскислителей.

Они препятствуют образованию газовых пор. Для полуавтоматической сварки подбирают проволоку диаметром 0,8, 1, 1,2, 1,6 или 2 мм, а для автоматической – 3 мм.

Для различных видов стали используют сварочную проволоку разных марок:

– для углеродистых и низколегированных – Св-08 ГС и Св-08 Г2 С, рассчитанных на величину тока 300–400 и 600750 А соответственно;

– для низколегированных повышенной прочности – Св-10 ХГ2 С;

– для теплоустойчивых сталей типа 20 ХМФ – Св-08 ХГСМФ и т. д.

Вылет сварочной проволоки в зависимости от величины сварочного тока может варьироваться в пределах 7-14 мм при токе 60-150 А и 15–25 мм при токе 200–500 А.

4. Расход углекислого газа (7-20 л/мин).

5. Скорость сварки (20–80 м/ч).

Примерные режимы для сварки в углекислом газе представлены в табл. 31, причем скорость подачи проволоки определяется методом подбора под соответствующий режим.

Таблица 31. РЕЖИМЫ ДУГОВОЙ СВАРКИ В СРЕДЕ УГЛЕКИСЛОГО ГАЗА

В процессе сварки не следует задерживать горелку в зоне сварочной ванны, чтобы не усилить разбрызгивание металла. При выполнении нижних швов горелку нужно держать под углом в 5-15° вперед либо назад (второй вариант предпочтительнее, поскольку при этом надежнее защищается металл сварочной ванны).

При механизированной сварке тонколистового металла (1–2 мм) совершение колебательных движений не требуется, а горелку рекомендуется держать под углом в 30–45° (углом назад).

Стыковые соединения металла толщиной 1,5–3 мм выполняют на весу. Более тонкий металл варят в вертикальном положении сверху вниз и ограничиваются только одним проходом.

Источник: https://profilib.org/chtenie/145990/galina-serikova-svarochnye-raboty-prakticheskiy-spravochnik-29.php

Сварка в среде защитных газов

При сварке в среде защитных газов электрическая дуга и рас­плавленный металл сварочной ванны защищены от атмосферного воздуха оболочкой из защитного газа. Разновидности способа дуговой сварки в защитных газах приведена на рис.

Дуговая сварка в защитных газах может быть выполнена пла­вящимся и неплавящимся (вольфрамовым) электродами.

Для защиты сварочной ванны при сварке в инертных газах в основном применяют аргон и реже гелий, вследствие его высо­кой стоимости.

Аргон обеспечивает хорошее формирование швов при сварке сталей неплавящимся электродом и при сварке плавящимся электро­дом алюминия и его сплавов. Гелий в сравнении с аргоном обес­печивает лучшую устойчивость горения дуги и большую глубину проплавления основного металла.

Сварка в смеси аргона (65 %) с гелием (35 %) обеспечивает глубокое проплавление основного металла, хорошее формирование металла шва, снижает разбрызгивание. Общая стоимость защитного газа значительно ниже по сравнению со сваркой в чистом гелии.

Сварка плавящимся электродом в инертных газах не находит широкого применения вследствие повышенного порообразования в металле шва.

Причины образования пор при сварке в инертныхгазах и их смесях следующие: повышенное содержание примесей в инертных газах; недостаточная защита расплавленного металла; повышенное содержание активных газов в основном металле и проволоке; недостаточное содержание элементов — раскислителей в сварочной проволоке; наличие влаги на поверхности свариваемых деталей и т. д.

В качестве активных газов при сварке используют углекислый газ и его смеси с кислородом.

Кислород снижает содержание углерода в металле шва до более низкого уровня. Избыток кислорода в защитном газе при­водит к образованию пор в металле шва, а также даже при достаточном содержании элементов-раскислителей увеличивает содер­жание кислорода в металле шва, снижая его механические свойства.

Азот по отношению к цветным металлам является инертным газом. При сварке низкоуглеродистых и высокоуглеродистых ста­лей применение азота в качестве защитного газа приводит к на­личию пор в сварном металле шва.

При сварке в инертных газах электродную проволоку приме­няют, как правило, того же химического состава, что и свари­ваемое изделие.

При сварке в углекислом газе используют проволоки с по­вышенным содержанием раскислителей и легирующих элементов.

Сварка производится на постоянном токе прямой полярности. В качестве присадочного металла используется проволока из меди Ml.

Электродуговая сварка в среде аргона.Сварка в инертных га­зах может выполняться плавящимся и неплавящимся электродами. Сварка неплавящимся электродом производится как с присадочной проволокой, так и без нее. Сварку по отбортовке и встык металла малой толщины выполняют без присадочной проволоки.

Аргонодуговую сварку применяют при изготовлении конструк­ций из жаропрочных и коррозионно-стойких сталей, цветных метал­лов и сплавов.

Аргонодуговую сварку неплавящимся электродом производят на постоянном токе прямой полярности и переменном токе.

Для сварки неплавящимся электродом применяют вольфрамо­вые электроды диаметром 0,8 — 8 мм по ТУ ВМ2 —529 —57 и лантанированные вольфрамовые электроды по ВТУ В Л № 24 — 5 — 62. Диаметр электрода рекомендуется выбирать в зависимости от за­щитного газа и силы тока.

При аргонодуговой сварке неплавящимся электродом высоколе­гированных сталей в качестве присадочного металла применяют электродные проволоки того же химического состава, что и основ­ной металл. Сварка производится на постоянном токе прямой полярности.

Сварку алюминиевых и магниевых сплавов выполняют на пере­менном токе в целях разрушения окисной пленки.

Сварку титана и его сплавов, циркония, молибдена, тантала и других активных металлов рекомендуется выполнять на постоян­ном токе прямой полярности.

Читайте также:  Как изготовить мебельный кондуктор

Принцип сварки с защитой гелия аналогичен принципу арго­нодуговой сварки.

Техника ручной аргонодуговой сварки имеет свои особенности и выполняется без колебательных движений горелки в связи с возможностью нарушения защиты зоны сварки. Угол между осью горелки и плоскостью изделия составляет 75 — 80°.

Угол между присадочным материалом и изделием соответственно 15 — 20°. Ре­жим при сварке неплавящимся электродом выбирают в зависи­мости от толщины и химического состава свариваемого изделия.

Для сварки неплавящимся электродом применяют специальные го­релки.

Для ручной сварки алюминиевых сплавов применяются отечественные уста­новки УДГ-300, УДГ-500 и др.

Сварка в углекислом газе. Сущность способа сварки в угле­кислом газе заключается в том, что электрическая дуга и рас­плавленный металл защищены от влияния кислорода и азота зоной защитного газа.

Сварка в углекислом газе выполняется плавящимся электродами. Особенность сварки плавя­щимся электродом заключается в применении электродных проволок с повышенным содержанием элементов раскислителей (марганца, кремния и др.

), компенсирующих их выгорание в зоне сварки.

Перед сваркой проволоку обезжиривают или очищают с помощью специальных абразивных устройств или металлической щеткой.

Техника сварки. Направленное движение сварочной горелки от­носительно сварного соединения, угол наклона горелки и расстояние от сопла до свариваемого изделия — все это объединяет понятие «техника сварки».

Характер движения горелки относительно сварного соединения находится в прямой зависимости от вида соединения, числа слоев и положения шва в пространстве.

Назначение движения горелки не только формировать шов за­данных размеров, формы и сплавления электродного металла с ос­новным, но и оказывать влияние на улучшение структуры металла шва. Особенно это должно учитываться при сварке высоколегиро­ванных сталей и сплавов, склонных к закалке.

Схема движения и размеры колебаний горелки при полуавто­матической сварке стыковых швов показаны на рис.

Источник: https://megaobuchalka.ru/3/22708.html

Технологические особенности сварки в среде защитных газов и их смесях

Полуавтоматы для дуговой сварки и их основные узлы

Применение дуговой сварки в среде защитных газов благодаря ее технологическим и экономическим преимуществам все больше возрастает. Технологическими преимуществами являются относительная простота процесса сварки и возможность применения механизированной сварки в различных пространственных положениях.

Незначительный объем шлаков позволяет получить высокое качество сварных швов. Сварка в среде защитных газов применяется для соединения как различных сталей, так и цветных металлов. Для сварки в защитных газах кроме источника питания дуги требуются специальные приборы и оснастка (приспособления).

Сварочный пост для сварки в среде защитного газа представлен на рис. 82.

Рис. 82. Пост для сварки в среде защитного газа: 1 — баллон с газом; 2 — подогреватель; 3 — осушитель; 4 — редуктор; 5 — расходомер (ротаметр); 6 — газоэлектрический клапан; 7 — источник питания; 8 — пульт управления; 9- рабочий стол; 10 — подающий механизм; 11 — горелкаСварка в защитных газах — это общее название разновидностей дуговой сварки, при которых через сопло горелки в зону горения дуги вдувается струя защитного газа. В качестве защитных газов применяют: аргон, гелий (инертные газы); углекислый газ, кислород, азот, водород (активные газы); смеси газов (Ar + CO2 + O2; Ar + O2; Ar + CO2 и др.). Смеси защитных газов должны удовлетворять требованиям ТУ.

Аргонокислородную смесь (Ar + 1—5 % О2) применяют при сварке малоуглеродистых и легированных сталей. В процессе сварки капельный перенос металла переходит в струйный, что позволяет увеличить производительность сварки и уменьшить разбрызгивание металла.

Смесь аргона с углекислым газом (Ar + 10—20 % СО2) также применяют при сварке малоуглеродистых и низколегированных сталей. При использовании этой смеси защитных газов устраняется пористость в сварных швах, повышается стабильность горения дуги и улучшается формирование шва.

Тройная смесь (75 % Ar + 20 % СО2 + 5 % О2) при сварке сталей плавящимся электродом обеспечивает высокую стабильность горения дуги, минимальное разбрызгивание металла, хорошее формирование шва, отсутствие пористости.

На практике используются либо баллоны с готовой смесью газов, либо баллоны с каждым газом отдельно. В последнем случае расход каждого газа регулируется отдельным редуктором и измеряется ротаметром типа РС-3.

При сварке в среде защитных газов различают следующие основные способы: сварка постоянной дугой, импульсной дугой;

плавящимся электродом и неплавящимся электродом.

Наиболее широко применяется сварка в среде защитных газов плавящимся и неплавящимся электродами.

Сварка неплавящимся электродом в защитных газах — это процесс, в котором в качестве источника теплоты применяется дуга, возбуждаемая _1 1 Т^Омежду вольфрамовым или угольным

(графитовым) электродом и изделием.

Сварка постоянным током прямой полярности позволяет получать максимальное проплавление свариваемого металла.

При сварке на постоянном токе применяются источники питания с крутопадающей ввольт-амперной характеристикой:

ВДУ-305, ВДУ-504, ВДУ-505, ВДУ-601, ВСВУ-300.

В комплект сварочной аппаратуры при сварке на постоянном токе входят сварочные горелки, устройства для первоначального возбуждения сварочной дуги, аппаратура управления сварочным циклом и газовой защиты Техническая характеристика некоторых сварочных горелок для ручной сварки вольфрамовым электродом приведена в табл. 40:

Таблица 40

Горелка Номинальный сварочный о. А Диаметр вольфрамового электрода, мм
ЭЗР-5 75 — воцушное охлаждение 0.5: 1.0: 1.5
ЭЗГ-З-бб 150 — воздушное охлаждение 1.5: 2.0: ГО
ГР-4 200 — воздушное охлаждение 0.S: 1.0: 1,2: 1.6; 2,0: 3.0
ГСН-1 450-водяное охлаждение 3.0: 4.0: 5.0
ГСН-2 150-водяное охлаждение 2.0: 2.5: 3.0

Для того, чтобы улучшить процесс зажигания дуги в среде защитных газов, используют специальные устройства первоначального возбуждения дуги. Это связано с тем, что защитные газы, попадая в зону горения дуги, охлаждают дуговой промежуток и дуга плохо возбуждается. Наиболее широко применяются устройства следующих марок: ОСППЗ-ЗООМ, УПД-1, ВНР-101, ОСПЗ-2М.

При сварке в среде защитных газов на переменном токе применяют устройство для стабилизации горения дуги, например, стабилизатор — возбудитель дуги ВСД-01.

Сварку можно выполнять как с присадочной проволокой, так и без присадки.

При сварке плавящимся электродом в защитных газах дуга образуется между концом непрерывно расплавляемой проволоки и изделием. Сварочная проволока подается в зону горения дуги подающим механизмом со скоростью, равной средней скорости ее плавления. Расплавленный металл электродной проволоки переходит в сварочную ванну и таким образом формируется сварной шов.

При этом способе сварки существуют определенные преимущества: обеспечивается высокая производительность сварки;

представляется возможность производить сварку при повышенной плотности мощности, при этом обеспечивается более узкая зона термического влияния;

представляется возможность механизировать процесс сварки.

При сварке плавящимся электродом в среде защитных газов различают следующие две основные разновидности процесса: сварка короткой дугой и сварка длинной дугой.

Сварка короткой дугой является естественным импульсным процессом и осуществляется с постоянной скоростью подачи сварочной проволоки. Особенностью этого процесса являются возникающие замыкания дугового промежутка с частотой 150—300 зам/с.

При сварке короткой дугой наблюдается мелкокапельный перенос электродного металла с частотой, равной частоте коротких замыканий. Это дает возможность производить сварку при меньших значениях сварочного тока, повысить стабилизацию процесса сварки и снизить потери металла на разбрызгивание.

Сварка длинной дугой — это процесс с редкими замыканиями дугового промежутка (3—10 зам/с). В зависимости от режима сварки, защитного газа и применяемых сварочных материалов наблюдаются различные способы переноса электродного металла в сварочную ванну: крупнокапельный, мелкокапельный, струйный и др.

Определенным недостатком сварки плавящимся электродом в аргоне и смеси аргона с гелием является сложность поддержания струйного процесса переноса электродного металла.

Для повышения стабильности сварки и улучшения формирования сварного шва к аргону добавляют до 5 % О2 или до 20 % СО2.

Методы контроля качества сварных соединений могут быть разделены на две основные группы: методы контроля без разрушения образцов или изделий — неразрушающий контроль; методы контроля с разрушением образцов или производственных стыков …

Надежность эксплуатации сварных соединений зависит от их соответствия нормативно-технической документации, которая регламентирует конструктивные размеры и форму готовых сварных швов, прочность, пластичность, коррозионную стойкость и свойства сварных соединений. Сварные соединения, выполненные …

Читайте также:  Повышение плотности электролита в аккумуляторе

Для предупреждения пожаров необходимо соблюдать следующие противопожарные мероприятия. Постоянно следить за наличием и исправным состоянием противопожарных средств (огнетушителей, ящиков с сухим песком, лопат, пожарных рукавов, асбестовых покрывал и т. д.). …

Источник: https://msd.com.ua/poluavtomaty-dlya-dugovoj-svarki-i-ix-osnovnye-uzly/texnologicheskie-osobennosti-svarki-v-srede-zashhitnyx-gazov-i-ix-smesyax/

Преимущества сварки в среде защитных газов

Среди самых эффективных способов сваривания металлов выделяется сварка в защитных газах. Специальные газы, поступающие в область сваривания, предотвращают поступление воздуха, который оказывает негативное влияние на свойства соединения материалов.

Благодаря этому сварные швы получаются чистыми (без шлака), герметичными (без пор) и соответствуют заданным характеристикам при соблюдении рекомендаций ГОСТ 14771-76.

Ручной способ и сваривание в камере

Проводимая на аппаратах полуавтоматического типа, ручная дуговая сварка в защитном газе бывает двух видов: локальная и общая в камере. Самая распространенной является локальная защита в струе инертного газа, который истекает из сопла сварочной горелки.

Местная защитная среда позволяет варить изделия любой сложности и любых габаритов, но не дает стопроцентной гарантии. Надежная защита обеспечивается только в зоне ламинарного потока газа, где возникает турбулентность, происходит захват воздуха и в этой области качество шва резко падает. Поэтому задача сварщика заключается еще и в расположении сварочной ванны в зоне ядра потока.

Организация нейтральной среды в камере обеспечивает стопроцентную защиту и позволяет получить сварной шов требуемого качества.

В камере создается избыточное давление, где размещаются свариваемые детали и аппарат для сварки с проволокой. В камерах обычно производят сварку металлов высокой химической активности, типа молибдена или титана.

Сварку в защитном газе можно проводить плавящимся электродом и с таким же успехом – неплавящимся.

Достоинства и слабые места процесса

К преимуществам работы в защитной газовой среде можно отнести следующее:

  • качество шва значительно лучше, чем при использовании обычной электродуговой сварки;
  • часть защитных газов имеют невысокую стоимость, но все же обеспечивают высочайшее качество шва;
  • освоение данной технологии сварки не представляет никаких трудностей для сварщиков имеющих опыт работы с другим технологическим оборудованием;
  • в защитных газах может производиться сварка как тонкостенных, так и толстостенных заготовок;
  • процесс сварки идет с высокой производительностью;
  • значительно упрощается работа с алюминием, цветными металлами и их сплавами, коррозионностойкой сталью;
  • технология сваривания в защитной среде легко поддается механизации и автоматизации.

Недостатки у данной технологии имеются, но не так существенны. Для работы на открытом воздухе требуются защитные экраны для предотвращения сдувания потока газа с области сваривания.

При сварке в закрытых помещениях должна быть вентиляция или обеспечено проветривание. Аргон, применяемый в сварочных работах, имеет высокую стоимость.

Какие газы применяют

Для защиты от воздействия воздуха применяют газ, которые условно разделяют на две группы инертные и химически активные.

Инертные газы всем хорошо известны – аргон, гелий и их сочетание. Вытесняя воздух из зоны окружения свариваемых заготовок, они не реагируют с металлом и не растворяются в нем.

Их применяют при сваривании алюминия, магния, титана и сплавов. В специальной литературе такой вид сварки с защитной средой из инертных газов обозначается как MIG (металл, инертный газ).

Если применять неплавящийся электрод для сварки в среде защитных газов, то такой процесс будет отлично подходить для соединения тугоплавких сталей, химически активных металлов или особо ответственных соединениях.

Сварка с активными газами получила название MAG сварки (металл, активный газ). К активным реактивам относят углекислоту, азот, водород, кислород.

Наибольшее распространение получила углекислота благодаря своей низкой стоимости. Для сравнения, азот стоит в 1,5 раза дороже, кислород в 3, водород в 4 раза, аргон и гелий в 45 и 156 раз соответственно.

В углекислоте

Сварка полуавтоматом в углекислоте получила широкое применение из-за ее дешевизны. Углекислота, попадая в область расплава, защищает его от разрушающего воздействия воздуха.

Но из-за высокой температуры в районе сварочной ванны она разлагается на окись углерода и кислород, поэтому в области сваривания оказываются три газа: углекислота, окись углерода и кислород.

Чтобы не допустить окисления, в сварочную проволоку добавляют кремний и марганец, который реагирует с кислородом раньше железа. За счет этого гасятся реакции образования вредных окисей.

При этом углекислый газ сохраняет свои изолирующие свойства, а соединения кремния и марганца вступают в реакцию друг с другом, в результате чего получается легкое по плотности вещество, которое всплывает в расплаве. Образовавшийся шлак впоследствии легко удаляется.

Перед использованием углекислоты нужно обязательно удалить воду из баллона. Для этого его переворачивают и сливают воду, через 20 минут процедуру повторяют, в противном случае пары воды вызовут пористость шва.

В азотной среде

Азот используют при сваривании деталей из меди и нескольких видов нержавеющей стали. Это обусловлено тем, что азот не реагирует с медью. В качестве электродов используются графитовые или угольные прутки, применение вольфрамовых прутков приводит к их перерасходу из-за образования легкоплавких соединений.

Работают на токах 150-500 А и напряжении дуги 22-30 В. Расход азота находится в пределах 3-10 л/мин. Газ хранится в баллонах при давлении 150 атмосфер.

Сварочное оборудование ничем не отличается от других видов сварки использующих газы, только в горелке предусмотрено специальное крепление для угольного электрода.

Оборудование

В аппаратуре для производства сварочных работ в защитной среде в качестве источника питания чаще всего используют инверторы с широкой регулировкой величины сварочного тока.

Они снабжены устройством подачи сварочной проволоки и газовую систему с баллонами, шлангами, понижающими редукторами. Сварку плавящимся электродом в защитных газах ведут постоянным или импульсным высокочастотным током.

Главными параметрами, характеризующими оборудование, является ток, который можно изменять; напряжение для зажигания и стабильного горения дуги; скорость подачи проволоки, ее толщина. Режимы сварки полуавтоматом многообразны. В зависимости от свариваемых материалов сила тока и другие параметры могут значительно меняться.

Перед началом сварочных работ в защитном газе свариваемые поверхности требуется очистить от всевозможных загрязнений. В первую очередь необходимо очистить кромки от оксидной пленки, ржавчины, жира, масла. Для этого применяются стальные скребки, растворители, нетканые материалы.

Применение защитных газов требует соблюдения определенной последовательности операций. Сначала подается защитный газ, затем включается источник питания, начинает подаваться присадочная проволока и зажигается дуга, потом только начинается процесс сварки.

После гашения электродуги, еще 10-15 секунд в зону сварки подают инертный газ. Это делается для того, чтобы избежать пагубного влияния атмосферы на шов.

В зависимости от видов свариваемых металлов, их толщины используют различные защитные газы. Например, аргон обеспечивает стабильность электрической дуги, а гелий позволяет получать более глубокую проварку шва.

При сварке меди используется водород. Наиболее универсальным газом, который может использоваться практически при сварке любых металлов является аргон. Только его высокая стоимость вынуждает применять более дешевые газы типа углекислого или азота.

Как и электродуговую, в автоматическом режиме применяют технологию сварочного процесса в газовой среде. Она легко поддается автоматизации и используется в роботизированных комплексах в больших производствах. Полуавтоматы широко применяются в мелких мастерских и автосервисах.

Источник: https://svaring.com/welding/vidy/svarka-v-srede-zashhitnyh-gazov

Ссылка на основную публикацию