Технология электроэрозионной обработки металлов

Электроэрозионная обработка металлов

Согласно статистике: 90% отечественного производства все еще базируется на механических методах обработки – шлифовании и полировании, фрезеровании и расточке. И вопрос тут даже не в качестве и прецизионности процесса, а в количестве отходов в виде стружки и угара.

В некоторых случаях проблема металлического мусора решается штамповкой и использованием порошковой проволоки, но это лишь способ временно уйти от проблемы.

Настоящим решением стала электрофизическая обработка, включающая в себя помимо ультразвуковой и электроннолучевой технологии еще и электроэрозионную.

Электроэрозионная обработка

По сути, электроэрозионная обработка является своего рода победой над природой. Ни для кого не секрет, насколько разрушительной бывает атмосферное электричество. Именно молния натолкнула ученых на серию экспериментов, доказавших, что электрический разряд при особых условиях способен, словно инструмент скульптора, создавать детали повышенной сложности.

Рабочим инструментом в большинстве случаев служит латунная тонкая проволока, способная многократно изгибаться под нужным углом. Мягкий материал находится под высоким напряжением, показатели которого выбираются таким образом, чтобы нагрев из-за собственного сопротивления не расплавил проволоку.

При съемке на высокоскоростную камеру легко заметить многочисленные искры, появляющиеся в месте контакта проволоки и металла заготовки. Даже при очень высоком квалитете шероховатости соприкосновение будет неполным: образуются проводящие мосты субмикронного сечения, нагревающиеся из-за наличия сопротивления.

Разогрев до 10000 градусов происходит мгновенно, поэтому некоторые металлы не просто испаряются, а сублимируют. С точки зрения физической химии высокое термическое воздействие разрушает кристаллическую решетку, и ионы металла отрываются от поверхности. Визуально же кажется, что латунная проволока «разъедает» основной металл, словно кислота.

Это и дало название методу, ведь с латинского «разъедание» звучит, как «эрозия». Т.о. проволока медленно погружается в заготовку, отверстие в которой в точности повторяет контур латунного инструмента.

Электроэрозионная технология применяется, когда обработка на традиционных механических станках затруднена или нерентабельна из-за отходов, повышенной твердости материала основы

В некоторых случаях в электроэрозионной обработке используются источники тока импульсного типа с частотой от 50 герц до сотен килогерц, при этом каждый импульс удаляет некоторое приблизительно одинаковое количество ионов.

Увеличение частоты означает снижение мощности и, как следствие, меньшую скорость обработки в обмен на повышающийся квалитет шероховатости обработанной поверхности.

Выбор латуни обусловлен высоким уровнем теплопроводности (в некоторых случаях используются более дорогие эрозионные материалы из тугоплавких металлов и сплавов). Длительность разряда выбирается минимальной, чтобы испаренные ионы не осаждались обратно.

Получить кратковременный разряд можно посредством подачи импульсов, но это накладывает определенные ограничения на источники питания, поэтому обычно используется скоростное изменение положения инструмента, инициирующее образование новых проводящих мостов.

Для гарантированного охлаждения испаряемого металла и его удаления из зоны контакта используются диэлектрические жидкости – керосин или машинное масло – в которые и погружается заготовка. Жидкий диэлектрик влияет на расстояние пробоя, снижая его до 150 мкм и меньше, чем ограничивает зону контакта.

Станки для электроэрозионной обработки

Очевидно, что использовать для снижения длительности разряда импульсные источники тока выходит дороже, нежели спроектировать автоматизированный модуль перемещения эрозионного инструмента относительно заготовки.

Устройство перемещения снабжается дополнительной системой мониторинга расстояния между проволокой и металлом заготовки: при большом расстоянии, когда не происходит образования достаточного количество проводящих мостов, инструмент приближается.

Если же расстояние пробоя слишком низкое – резко возрастает вероятность активного распределения разряда, что влечет за собой слабый нагрев и, как следствие, неэффективность метода.

Для некоторых электроэрозионных техпроцессов используется не латунная и тугоплавкая проволока, а толстый стержень, объем которого позволяет получать оттиски на металле заготовки, или диск, вращение которого позволяет прорезать глубокие щели или обрабатывать чрезмерно прочные материалы. Электроэрозионные станки отечественного производства отличаются широким модельным рядом и рассчитаны на обработку деталей различного размера.

Катод-анодная и анодно-механическая системы

Электроэрозионная технология включает в себя несколько методов, одни из которых позволяют выполнять сложнофасонные прожиги и вырезать отверстия, другие – разделять заготовки, выполненные из жаропрочных аустенитных сталей или титановых соединений.

В основе метода электроискровой обработки лежит образование катод-анодной системы, где заготовка заряжается положительно, а эрозионный инструмент – отрицательно.

При этом в месте контакта возникает дуговой разряд короткой продолжительности. Температура в середине дуги минимально достигает 8 тысяч градусов.

Поскольку расстояние пробоя достаточно низкое, разница в температуре поверхности металла в зоне контакта и в центре дуги небольшая.

Другой разновидностью электроэрозионной обработки в системе катод-анод является анодно-механическая технология, когда отрицательно заряжена не проволока, а диск или замкнутая лента. Диэлектрическая пленка в местах контакта вращающегося инструмента временно разрушается. В местах же открытия чистого металла образуются дуговые разряды, испаряющие тонкий поверхностный слой.

При электроимпульсной обработке сменяется полярность системы катод-анод. Образуемые дуговые разряды прерываются перемещением инструмента и отключением тока. Средняя температура разряда достигает 5000 градусов.

Электроэрозионные станки на практике

Электроэрозионная технология применяется, как правило, когда обработка на традиционных механических станках затруднена или нерентабельна из-за отходов, повышенной твердости материала основы.

После изобретения электроэрозионной технологии она сразу же получила широкое распространение, как экономичная и производительная, но вскоре из-за сложности автоматизации техпроцесса популярность метода упала, уступив место механической обработке на ЧПУ.

Сегодня, когда производственники ощутили, что отечественная промышленность не может себе позволить массово проектировать высокопрецизионные техпроцессы с использованием современных плазменных или лазерных технологий, многие снова обратились к электроэрозионным станкам.

Несмотря на возраст технологии, она до сих пор зачастую оказывается более удобной для создания объемных деталей сложной формы, например лопастей турбин, валов или пресс-форм, поскольку стоимость электроэрозионного станка намного ниже.

Кроме того, установки лазерной и плазменной обработки, как правило, рассчитаны на заготовки небольших размером, что резко ограничивает их применение к тяжелой промышленности. Т.о. возрождение электроэрозионной обработки стало своего рода ответом отечественной промышленности зарубежным технологиям. Часть I

Источник: https://www.equipnet.ru/articles/hi-tech/hi-tech_408.html

ВЫСЬ

Главная страница » Электроэрозионная обработка


Электроэрозионная обработка

Электроэрозионная обработка (ЭЭО) заключается в изменении формы, размеров, шероховатости и свойств поверхности электропроводной заготовки под действием электрических разрядов между заготовкой и электродом-инструментом.

ЭЭО относится к электрофизическим методам обработки. Ее технология придумана супружеской парой российских ученых Лазаренко еще в 50-х годах двадцатого века. Но нынешнее использование она обрела только в семидесятых.

ЭЭО дает возможность изготавливать предметы, которые невозможно получить с помощью традиционного механического метода обработки металлов. Можно создать глубокие пазы, делать изделия с малыми внутренними радиусами, выполнять точную штамповую оснастку и многие другие виды работ.
 

Суть процесса электроэрозионной обработки

Два электрода, одним из которых является электрод-инструмент (1), а вторым само металлическое изделие (2) помещаются в жидкость с низкой диэлектрической проницаемостью и соединяются с генератором электрических импульсов. Электроды имеют разную полярность.

Так между двумя электродами образуется электрическое поле, причем напряженность этого поля зависит от расстояния между самими электродами.

При приближении электрода-инструмента к электроду-заготовке напряженность возрастает, и как только электроды сблизятся до определенной малой величины (5…100 мкм) произойдет пробой диэлектрической жидкости. Жидкость нагреется до высоких температур и образуется газовый пузырь из паров жидкости.

Возникший разряд электрического тока протекает как раз уже в газовой среде пузыря, под действием этого разряда и происходит нагревание и расплавление участка заготовки, Расплавленный маленький участок материала охлаждается и застывает в виде «шариков» диаметром 0,005…0,01 мм в диэлектрической жидкости, опускается на дно ванны или удаляется потоком жидкости, а на обрабатываемой поверхности образуется лунка. В виду локального нагрева электродов до высоких температур, ЭЭО называют обработкой, основанной на тепловом действии электрического тока.

Такие разряды происходят периодически, импульсно. Частота импульсов и их длительность играют важную роль на достижение качества обрабатываемой детали. Например, чем меньше длительность импульса, тем меньше шероховатость поверхности.

Движение инструмента вызывает дальнейшие разряды один за другим, при этом разряд всегда происходит между ближайшими точками электродов. Даже на гладких поверхностях имеются микронеровности, и при сближении электродов всегда найдутся две близкорасположенные друг к другу точки электродов, между ними и происходит разряд.

Таким образом процесс ЭЭО состоит из двух этапов: сначала происходит электрический пробой диэлектрической жидкости, а затем устанавливается дуговой разряд.

Процесс ЭЭО основан на электрической эрозии, т.е. разрушении верхнего слоя поверхности детали от воздействия электрических разрядов. Когда-то этот процесс считался только как отрицательный, но с применением его в качестве размерной обработки материалов, он приобрел и положительный эффект.

Процесс электроэрозионной обработки происходит до тех пор, пока не будет выбран весь материал или не будут достигнуты нужные размеры детали. Заготовка постепенно будет принимать форму инструмента.

В качестве диэлектрической жидкости выступают ликвидные смеси, такие как: керосин, спиртовые растворы, маслянистые жидкости, вода и т.д.

В представленной схеме заготовка имеет положительный полюс и она является анодом, а инструмент отрицательный полюс, он является катодом.

От воздействия разрядов происходит разрушение обоих электродов и какой электрод будет разрушаться больше зависит от многих факторов — полярного эффекта, а также материала электродов и т.д.

Повышение эрозии одного электрода относительно другого электрода и есть полярный эффект.

Прямой полярностью называют такое подключение полюсов к электродам, которое вызывает большую эрозию обрабатываемого электрода-заготовки. Соответственно, когда эрозия электрода-инструмента больше, чем электрода-заготовки подключение называют обратной полярностью.

Учитывая это, электрод-инструмент необходимо изготавливать из материалов стойких к электрической эрозии, таких как латунь, медь, графит, вольфрам и т.д.
 

Виды электроэрозионной обработки

Выделяют 4 вида электроэрозионной обработки:

— Электроискровая

— Электроимпульсная

— Анодно-механическая

— Электроконтактная

Данные виды ЭЭО используются для проведения размерной обработки изделия, а также два из них электроискровая и электроимпульсная обработки могут использоваться еще и для упрочнения или покрытия поверхности.

По методам подвода энергии ЭЭО разделяют на три группы:

— Через контакт. К этой группе относится электромеханический способ.

— Через канал разряда. Электроискровой и электроимпульсный способы.

— Комбинированный контактно-дуговой. Электроконтактный и Анодно-механический способ.

Также выделяют и следующие виды ЭЭО:

— Электроэрозионная комбинированная. Ее суть заключается в том, что она выполняется в одно время с остальными видами работы над металлом.

— Комбинированная электро-химическая. Осуществляется одновременно с электрическим и химическим расщеплением структуры материала детали в электролите.

— Электроэрозионная абразивная. Суть лежит в разрушении металлической заготовки с помощью абразивной обработки.

Электроискровая и электроимпульсная обработки отличаются друг от друга устройством генератора импульсов, формой импульса, полярностью электродов и т.д. А электроконтактная, анодно-механическая обработки отличаются родом тока и рабочей средой.

Читайте также:  Как подобрать заглушки для профильной трубы

Но суть всех этих видов остается одной, а именно — удаление металла в результате термического действия электрического тока.
 

Технологии электроэрозионной обработки

С помощью ЭЭО проводятся операции:

• Прошивание. Электрод-инструмент углубляется в электрод-заготовку и образует отверстие постоянного сечения.

Прошивание отверстий является одной из распространенных операций. Методом ЭЭО возможно обрабатывать отверстия длиной до 20 диаметров, а используя трубчатый электрод-инструмент и до 40 диаметров. При вращении электрода-инструмента или обрабатываемой поверхности, или одновременно и инструмента, и заготовки, глубина отверстия может быть увеличена.

Также прошиванием обрабатывают узкие щели, пазы, окна, карманы и другие элементы, которые механическими методами обработать невозможно.

• Копирование. ЭЭО обработка, при которой форма детали повторяет форму инструмента. Таким методом обрабатывают объемные поверхности.

• Отрезание/вырезание.

• Сложноконтурная проволочная вырезка. Вырезку контурной детали можно сделать и путем прошивания, но для этого нужен электрод-инструмент, имеющий форму детали, что не отвечает требования экономичности.

При проволочной вырезке инструментом является тонкая проволока из меди, латуни, вольфрама. Диаметр проволоки от нескольких микрон до 0,5 мм. Проволока перематывается с катушки на катушку для обеспечения равномерности износа проволоки. Данный метод обеспечивает высокую точность обрабатываемой детали, плюс данный процесс полностью автоматизирован.

• Шлифование. Применяют для чистовой обработки труднообрабатываемых материалов и твердых сплавов.

• Доводка.

• Маркирование. Нанесение букв, цифр, логотипов высокого качества и не вызывает внутренние напряжения, деформации деталей, что имеет место при ударном маркировании.

• Упрочнение. Придание поверхности детали особых свойств. Этот процесс называют электроэрозионным легированием, его сущность заключается в перенесении материала электрода на заготовку. Данный процесс создает износоустойчивый упрочненный поверхностный слой детали.

• Другие виды операций.

Невозможно не подчеркнуть то, что электроэрозионная обработка металлов дает возможность получить поверхности самых разных конфигураций и геометрических форм при минимальных трудозатратах.

Преимущества и недостатки электроэрозионной обработки

Такая обработка в ряде случаев является одним из самых экономически выгодных способов обработки изделий. Детали, изготовленные по такой технологии, отличаются высоким уровнем прочности и точностью исполнения. Преимуществами данного метода являются:

• Глубокая обработка заготовки. Глубина прошиваемого отверстия может достигать 40 диаметров.

• Подходит для задач, с которыми не справляются методы механической обработки, например, обработки закрытых полостей с фигурной поверхностью дна, малыми внутренними радиусами и т.д. Механическая обработки ограничена радиусом фрезы, в том время, как ЭЭО позволят получать радиус порядка 0,1мм. Изделия могут иметь совершенно различную форму.

• Обеспечивается высокая точность резки до 0,001 мм, и низкая шероховатость поверхности.

• Бесшумность.

• Экономное использование ресурсов. Малый износ инструментов и т.д.

• Применим для материалов любой плотности, таких как труднообрабатываемые материалы, твердые сплавы и другие очень прочные материалы.

• Не нуждается в промежуточных операциях, ЭЭО позволяет получать полностью готовую деталь.

• Однородная поверхность детали.

• Снижает риски деформации тонкостенных деталей, которая наблюдается при механической обработке.

Стоит отметить и то, что ЭЭО обладает также и рядом недостатков, а именно:

• Не высокая производительность.

• Высокое энергопотребление.

• ЭЭО применима только для электропроводящих материалов.

Не смотря на недостатки, электроэрозионная обработка обладает большим потенциалом, и широко применяется в промышленности. Например, для обработки глубоких полостей с малыми внутренними радиусами, узких пазов и многих других элементов применяется только электроэрозионная обработка.

Достоинства электроэрозионной обработки хорошо видны в ходе создания техоснастки и сопутствующих элементов: матрицы, пунсона, лекального шаблона, прессовой формы и других деталей из труднообрабатываемых материалов и твердых сплавов.

Оборудование для электроэрозионной обработки

Этим устройством принято считать электроэрозионный станок. Он поможет создать фасонные полости и профильные пазы на изделиях из твердых материалов.

Касательно количества видов фасонных полостей и других элементов, которые сейчас уже применяются в различных отраслях промышленности, то следует отметить, что объемы их внушительные. И с развитием ЭЭО детали будут усложняться и дальше.

С этим связано и развитие оборудования совершенно в различных направлениях, например, обеспечения возможности обработки больших габаритных деталей, обработки под углом, параллельной обработки нескольких деталей (пакетом) и других возможностей, а также в направлении снижения энергопотребления, повышения производительности и т.д.
Автоматизация таких станков дает значительный эффект, так применение станков с ЧПУ, позволяет снизить трудоемкость обработки изделий.

Электроэрозионные станки обычно просты в использовании и обеспечивают их быструю переналадку.
 

Проектирование электроэрозионной обработки

Технологическая подготовка производства изделий на электроэрозионных станках связана с множеством задач, в том числе и с проектированием электродов-инструментов. Такие инструменты обычно имеют сложные поверхности и предназначены для обработки штампов и других деталей.

Чтобы создать такой электрод нужно спроектировать его 3d-модель, выпустить конструкторскую документацию и разработать технологический процесс изготовления электрода, а также разработать управляющую программу для его обработки на станке с ЧПУ. Данные задачи решаются с помощью автоматизированных CAD/CAM-систем.

В случае проволочно-вырезной электроэрозионной обработки необходима подготовка соответствующих данных (чертежей, управляющих программ) для работы станка. Для этого используются специальные модули «Электроэрозионная обработка», которые уже стандартно входят в состав различных CAD/CAM-систем.

Технологическая подготовка производства и проектирование операции электроэрозионной обработки является важным этапом, так как она применяется на дорогостоящих деталях и из дорогостоящих материалов, поэтому осуществляется высококвалифицированными специалистами.

 

Заключение

Технология электроэрозионной обработки широко развивается и стала одним из распространенных способов обработки материалов, она прочно вошла в жизнь современной промышленности.

Ее использование позволяет легче воплотить в жизнь более лучшие конструкторские решения при создании деталей, к которым предъявляются высокие требования надежности, жесткости, и изготавливаемых из твердых и труднообрабатываемых материалов. Данные детали в свою очередь совершенствуют различную технику.

Таким образом, результатом электроэрозионной обработки является деталь с самой разной и сложной конструкцией.

Источник: http://vys-tech.ru/2017/08/12/elektroerozionnaya-obrabotka/

Электроэрозионная обработка металла. Технология электроэрозионной обработки. | мтомд.инфо

Методы электроэрозионной обработки металла основаны на явлении эрозии электродов из токопроводящих материалов при пропускании между ними импульсного электрического тока. Разряд между электродами происходит в газовой среде или при заполнении межэлектродного пространства диэлектрической жидкостью – керосин, минеральное масло.

При наличии разности потенциалов на электродах происходит ионизация межэлектродного пространства. При определенном значении разности потенциалов – образуется канал проводимости, по которому устремляется электроэнергия в виде импульсного искрового или дугового разряда.

Технология электроэрозионной обработки

На поверхности заготовки температура возрастает до 10000…12000 0C. Происходит мгновенное оплавление и испарение элементарного объема металла и на обрабатываемой поверхности образуется лунка. Таким образом осуществляется электрическая эрозия токопроводящего материала, показанная на примере действия одного импульса тока на рисунке, и образование одной эрозионной лунки.

Схема электроэрозионной обработки

1 — источник тока; 2 — электрод-заготовка; 3 — электрод-инструмент; 4 — гранулы удаленного металла; 5 — удаленный металл; 6 — лунка; 7 — импульсный разряд; 8 — рабочая жидкость

Удаленный металл застывает в диэлектрической жидкости в виде гранул диаметром 0,01…0,005 мм.

При непрерывном подведении к электродам импульсного тока процесс эрозии продолжается до тех пор, пока не будет удален весь металл, находящийся между электродами на расстоянии, при котором возможен электрический пробой (0,01…0,05 мм) при заданном напряжении.

Для продолжения процесса необходимо сблизить электроды до указанного расстояния. Электроды сближаются автоматически с помощью следящих систем.

Материалы, из которых изготавливается электрод-инструмент, должны иметь высокую эрозионную стойкость. Наилучшие показатели в отношении эрозионной стойкости ЭИ и обеспечения стабильности протекания электроэрозионного процесса имеют медь, латунь, вольфрам, алюминий, графит и графитовые материалы.

Операции, производимые с помощью электроэрозионной обработки:

  • Электроэрозионное прошивание отверстий — прошивают отверстия на глубину до 20 диаметров с использованием стержневого электрода-инструмента и до 40 диаметров — трубчатого электрода-инструмента. Глубина прошиваемого отверстия может быть значительно увеличена, если вращать электрод-инструмент, или обрабатываемую поверхность, или и то и другое с одновременной прокачкой рабочей жидеости через электрод-инструмент или с отсосом ее из зоны обработки. Скорость электроэрозионного прошивания достигает 2-4 мм/мин.
  • Электроэрозионное маркирование — выполняется нанесением на изделие цифр, букв, фирменных знаков и др. Электроэрозионное маркирование обеспечивает высокое качество, не вызывает деформации металла и не создает зоны концентрации внутреннего напряжения, которое возникает при маркировании ударными клеймами. Глубина нанесения знаков может колебаться в пределах от 0,1 до 1 мм. Операция может выполняться одним электродом-инструментом и по многоэлектродной схеме. Производительность составляет около 3-8 мм/с. Глубина знаков зависит от скорости движения электрода. При скорости движения электрода более 6 мм/с четкость знаков ухудшается. В среднем на знак высотой 5 мм затрачивается около 4 с.
  • Электроэрозионное вырезание — в основном производстве применяют при изготовлении деталей электровакуумной и электронной техники, ювелирных изделий; в инструментальном производстве при изготовлении матриц, пуансонов, пуансонодержателей и других деталей, а также вырубных штампов, копиров, шаблонов, цанг, лекал, фасонных резцов и др.
  • Электроэрозионное шлифование — этот процесс шлифования применяют для чистовой обработки труднообрабатываемых материалов, магнитных и твердых сплавов. Отклонение размеров профиля после электроэрозионного шлифования находится в пределах от 0,005 до 0,05 мм, шероховатость Ra = 2,5..0,25, производительность — 260 мм2/мин.

Источник: http://www.mtomd.info/archives/2190

Электроэрозионная обработка и резка металла

Технология электроэрозионной обработки позволяет резать электропроводящий материал любой твердости (твердый сплав, титан, высоколегированные нержавеющие стали и т.п.). Электроэрозионная обработка металлов применяется для формирования сложного профиля, в том числе и под углом на большой длине, ширине и толщине детали, с требуемой высокой точностью — до сотых миллиметра.

Купить товар

Описание

Получаемые путем электроэрозионной обработки изделия

Преимущества электроэрозионной обработки и резки

Схемы генерации импульсов

Видео

Описание:

Электроэрозионная обработка — энергоемкий технологический процесс, заключающийся в изменении формы, размеров, шероховатости и свойств поверхности электропроводной заготовки – детали под действием электрических разрядов, возникающих между заготовкой и электродом-инструментом.

При этом заготовка является одним из электродов (катод), а другой электрод (анод) является инструментом, которым и происходит сама обработка.

Когда электрод-инструмент касается детали, под действием искрового электрического разряда происходит локальное разрушение обрабатываемого участка металла. Это место охлаждается жидкостью со специальным составом.

Она так же служит для вымывания образовавшихся отходов от разрушения.

Электрический разряд между электродами идёт в несколько этапов: сначала происходит электрический пробой, который может сопровождаться искровыми разрядами, а затем устанавливается дуговой разряд.

Частота электрических импульсов и их длительность выбирается исходя из технологических требований к обрабатываемой поверхности. Длительность импульса обычно лежит в диапазоне 0,1 — 10−7 секунды, частота от 5 кГц до 0,5 МГц. Чем меньше длительность импульса, тем меньше шероховатость получаемой поверхности.

Читайте также:  Как открыть мини-завод по переработке пластиковых бутылок

Средний ток во время электроэрозионной обработки зависит от площади обрабатываемой поверхности. Чем она больше – тем он выше.

Технология электроэрозионной обработки позволяет резать электропроводящий материал любой твердости (твердый сплав, титан, высоколегированные нержавеющие стали и т.п.).

Электроэрозионная обработка металлов применяется для формирования сложного профиля, в том числе и под углом на большой длине, ширине и толщине детали, с требуемой высокой точностью — до сотых миллиметра.

Получаемые путем электроэрозионной обработки изделия:

Фильеры, внутренние и внешние зубья, пазы, ребра радиаторов с высокими требованиями к теплопередаче и т.п.

Преимущества электроэрозионной обработки и резки:

— большая толщина реза,

— отсутствие деформаций поверхностного слоя,

— низкая шероховатость поверхности,

— электроэрозионная резка применяется тогда, когда некоторые материалы невозможно разрезать другим способом.

Схемы генерации импульсов:

— электроискровая схема предусматривает периодическую подачу импульсов электрического тока одной полярности в течение всего процесса обработки. В качестве анода вступает обрабатывающий инструмент. Электрическая схема такой установки генерирует затухающий импульс (синусоиду), что приводит к потерям энергии, т.к.

пробой возникает при определенном значении тока. При большой длительности импульса процесс обработки детали (катода) ускоряется, но увеличивается шероховатость и снижается точность, т.к. анод начинает изнашиваться.

Пауза между импульсами позволяет восстановиться показателю электропроводности и отвести продукты резания из зоны обработки;

— электроимпульсная схема предусматривает формирование униполярных электрических импульсов заданной формы. Вид осциллограммы импульса — П-образный или близкий к ней, что позволяет получать пробой между электродами без потерь и с заданной мощностью.

Для повышения производительности импульсы могут объединяться в пакеты с небольшими паузами между ними. Пауза между пакетами используется для охлаждения рабочей пары, отвода продуктов обработки и восстановления показателя электропроводности жидкости.

В техническом исполнении и обслуживании электроискровая схема формирования импульсов более проста и дешевая, но по качеству поверхности и точности повторения контура формообразующего сечения она значительно уступает электроимпульсной.

Видео:

РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ ТЕХНОЛОГИЙ

ЗВОНИТЕ: +7-908-918-03-57

либо воспользуйтесь поиском аналогов технологий:

ПОИСК АНАЛОГОВ ТЕХНОЛОГИЙ

или пиши нам здесь…

карта сайта

Войти    Регистрация

Виктор Потехин

Поступил вопрос касательно санации трубопровода. Дан ответ. В частности указана более инновационная технология.

2018-05-17 18:10:26Виктор Потехин

Поступил вопрос касательно сотрудничества, а именно: определения направлений развития предприятия и составления планов будущего развития. В настоящее время ведутся переговоры. Будет проанализирована исходная информация, совместно выберем инновационные направления и составим планы.

2018-05-18 10:34:05Виктор Потехин

Поступил вопрос касательно электрохимических станков. Дан ответ.

2018-05-18 10:35:57Виктор Потехин

Поступил вопрос относительно пиролизных установок для сжигания ТБО. Дан ответ. В частности, разъяснено, что существуют разные пиролизные установки: для сжигания 1-4 класса опасности и остальные. Соответственно разные технологии и цены.

2018-05-18 11:06:55Виктор Потехин

К нам поступают много заявок на покупку различных товаров. Мы их не продаем и не производим. Но мы поддерживаем отношения с производителями и можем порекомендовать, посоветовать.

2018-05-18 11:08:11Виктор Потехин

Поступил вопрос по гидропонному зеленому корму. Дан ответ: мы не продаем его. Предложено оставить заявку в комментариях для того, чтобы его производители выполнили данную заявку.

2018-05-18 17:44:35Виктор Потехин

Поступает очень много вопросов по технологиям. Просьба задавать эти вопросы внизу в комментариях к записям.

2018-05-23 07:24:36Andrey-245

Не совсем понятно. Эту батарейку можно вообще не заряжать что ли? Сколько вольт она выдает? И где ее купить? И можно ли такие соединить последовательно-параллельно, собрав нормальный аккумулятор, например, для электромобиля?

2018-08-23 10:09:48Виктор Потехин 2018-08-24 08:33:25SergeyShef

Добрый день! Интересна вышеописанная установка. Как можно её заказать ? Какие условия сотрудничества у автора?

2018-08-27 17:07:42Виктор Потехин

Сергей, кидайте сюда ссылку на установку. Или пишите мне vnp1@ya.ru

2018-08-27 18:52:14SergeyShef

Я у Вас спрашивал, как и где её можно купить?

2018-08-27 21:07:41SergeyShef

Кто изготовил тот образец, который у Вас на фото и могут ли изготавливать на заказ?

2018-08-27 21:10:05Виктор Потехин

не могу понять, что за установка. скиньте сюда ссылку

2018-08-27 23:15:16Виктор Потехин

не обладаем такой информацией

2018-08-28 21:45:17npc-ses

Добрый день! SergeyShef изделие подобное тому, что изображено в заголовке, да и в принципе любое изделие по технологии LTCC можно изготовить на нашем производстве АО “НПЦ “СпецЭлектронСистемы”. Находимся в г. Москва. Можете написать мне на электронную почту vag_av@npc-ses.ru

2018-08-29 18:41:34npc-ses

На нашем производстве имеется пожалуй самый полный комплект оборудования в России, который позволяет производить 3D микросборки, в том числе по технологии LTCC, в замкнутом цикле, начиная от входного контроля материалов, всех промежуточных производственных процессов…

2018-08-29 18:47:20Djahan

КРИОГЕЛЬ ДЛЯ РОСТА И РАЗВИТИЯ РАСТЕНИЙ В НЕБЛАГОПРИЯТНЫХ УСЛОВИЯХ. кто производит, как найти, чтобы купить?

2018-08-30 23:48:23Виктор Потехин

купить можно у производителя

2018-09-01 20:58:09Andrey-245

Здравствуйте, Виктор. Я задавал вопрос (2018-08-23) имелось в виду про углеродную батарейку, которая служит более 100 лет.

2018-09-18 12:15:33Виктор Потехин

вся информация, что есть по батарейке, написана в соответствующей статье.

Источник: http://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/es/elektroerozionnaya-obrabotka-i-rezka-metalla/

Описание технологии электроэрозионной обработки

Электроэрозионная обработка основана на вырывании частиц материала с поверхности импульсом электрического разряда. Если задано напряжение (расстояние) между электродами, погруженными в жидкий диэлектрик, то при их сближении (увеличении напряжения) происходит пробой диэлектрика — возникает электрический разряд, в канале которого образуется плазма с высокой температурой.

Так как длительность используемых в данном методе обработки электрических импульсов не превышает 10—2сек, выделяющееся тепло не успевает распространиться в глубь материала и даже незначительной энергии оказывается достаточно, чтобы разогреть, расплавить и испарить небольшое количество вещества.

Кроме того, давление, развиваемое частицами плазмы при ударе об электрод, способствует выбросу (эрозии) не только расплавленного, но и просто разогретого вещества. Поскольку электрический пробой, как правило, происходит по кратчайшему пути, то прежде всего разрушаются наиболее близко расположенные участки электродов.

Таким образом, при приближении одного электрода заданной формы (инструмента) к другому (заготовке) поверхность последнего примет форму поверхности первого (рис. 1). Производительность процесса, качество получаемой поверхности в основном определяются параметрами электрических импульсов – их длительностью, частотой следования, энергией в импульсе.

Электроэрозионный метод обработки объединил электроискровой и электроимпульсный методы.

Электроэрозионные методы особенно эффективны при обработке твёрдых материалов и сложных фасонных изделий. При обработке твёрдых материалов механическими способами большое значение приобретает износ инструмента.

Преимущество электроэрозионных методов, как и вообще всех электрофизических и электрохимических методы обработки, состоит в том, что для изготовления инструмента используются более дешёвые, легко обрабатываемые материалы.

Часто при этом износ инструментов незначителен.

Например, при изготовлении некоторых типов штампов механическими способами более 50% технологической стоимости обработки составляет стоимость используемого инструмента. При обработке этих же штампов электроэрозионными методами стоимость инструмента не превышает 3,5%.

Условно технологические приёмы электроэрозионной обработки можно разделить на прошивание и копирование. Прошиванием удаётся получать отверстия диаметром менее 0,3 мм,что невозможно сделать механическими методами. В этом случае инструментом служит тонкая проволочка.

Этот приём на 20—70% сократил затраты на изготовление отверстий в фильерах, в том числе алмазных. Более того, электроэрозионные методы позволяют изготовлять спиральные отверстия. При копировании получила распространение обработка ленточным электродом.

Лента, перематываясь с катушки на катушку, огибает копир, повторяющий форму зуба. На грубых режимах лента «прорезает» заготовку на требуемую глубину, после чего вращением заготовки щель расширяется на нужную ширину. Более распространена обработка проволочным электродом, то есть лента заменяется проволокой.

Этим способом, например, можно получать из единого куска материала одновременно пуансон и матрицу штампа, причём их соответствие практически идеально.

Разрушение поверхностных слоев материала под влиянием внешнего воздействия электрических разрядов называется электрической эрозией. На этом явлении основан принцип электроэрозионной обработки.

Электроэрозионная обработка заключается в изменении формы, размеров, шероховатости и свойств поверхности заготовки под воздействием электрических разрядов в результате электрической эрозии.

Под воздействием высоких температур в зоне разряда происходят нагрев, расплавление, и частичное испарение металла. Для получения высоких температур в зоне разряда необходима большая концентрация энергии.

Для достижения этой цели используется генератор импульсов.

Процесс электроэрозионной обработки происходит в рабочей жидкости, которая заполняет пространство между электродами; при этом один из электродов — заготовка, а другой — электрод-инструмент.

Под действием сил, возникающих в канале разряда, жидкий и парообразный материал выбрасывается из зоны разряда в рабочую жидкость, окружающую его, и застывает в ней с образованием отдельных частиц.

В месте действия импульса тока на поверхности электродов появляются лунки.

Таким образом осуществляется электрическая эрозия токопроводящего материала, показанная на примере действия одного импульса тока, и образование одной эрозионной лунки.

Материалы, из которых изготавливается электрод-инструмент, должны иметь высокую эрозионную стойкость. Наилучшие показатели в отношении эрозионной стойкости электродов-инструментов и обеспечения стабильности протекания электроэрозионного процесса имеют медь, латунь, вольфрам, алюминий, графит и графитовые материалы.

Общая характеристика процесса электроэрозионной обработкиТиповой технологический процесс электроэрозионной обработки на копировально-прошивочных станках заключается в следующем:- Заготовку фиксируют и жестко крепят на столе станка или в приспособлении. Тяжелые установки (весом выше 100 кг) устанавливают без крепления. Устанавливают и крепят в электродержателе электрод-инструмент.

Положение электрода-инструмента относительно обрабатываемой заготовки выверяют по установочным рискам с помощью микроскопа или по базовым штифтам. Затем ванну стакана поднимают и заполняют рабочей жидкостью выше поверхности обрабатываемой заготовки.- Устанавливают требуемый электрический режим обработки на генераторе импульсов, настраивают глубинометр и регулятор подачи.

В случае необходимости включают вибратор и подкачку рабочей жидкости.- В целях повышения производительности и обеспечения заданной шероховатости поверхности обработку производят в три перехода: предварительный режим — черновым электродом-инструментом и окончательный — чистовым и доводочным.4.

1 Типовые операции электроэрозионной обработкиПрошивание отверстийПри электроэрозионной обработке прошивают отверстия на глубину до 20 диаметров с использованием стержневого электрода-инструмента и до 40 диаметров — трубчатого электрода-инструмента.

Глубина прошиваемого отверстия может быть значительно увеличена, если вращать электрод-инструмент, или обрабатываемую поверхность, или и то и другое с одновременной прокачкой рабочей жидкости через электрод-инструмент или с отсосом ее из зоны обработки. Скорость электроэрозионного прошивания достигает 2-4 мм/мин.

МаркированиеМаркирование выполняется нанесением на изделие цифр, букв, фирменных знаков и др. Электроэрозионное маркирование обеспечивает высокое качество, не вызывает деформации металла и не создает зоны концентрации внутреннего напряжения, которое возникает при маркировании ударными клеймами. Глубина нанесения знаков может колебаться в пределах от 0,1 до 1 мм.

Читайте также:  Болгарка хитачи: виды, характеристики и сфера применения

Операция может выполняться одним электродом-инструментом и по многоэлектродной схеме. Изготавливаются электроды-инструменты из графита, меди, латуни, алюминия.Производительность составляет около 3-8 мм/с. Глубина знаков зависит от скорости движения электрода. При скорости движения электрода более 6 мм/с четкость знаков ухудшается. В среднем на знак высотой 5 мм затрачивается около 4.

Вырезание

В основном производстве электроэрозионное вырезание применяют при изготовлении деталей электро-вакуумной и электронной техники, ювелирных изделий и т.д.

в инструментальном производстве, при изготовлении матриц, пуансонов, пуансонодержателей и других деталей, а также вырубных штампов, копиров, шаблонов, цанг, лекал, фасонных резцов и др.

ШлифованиеПроцесс электроэрозионного шлифования применяют для чистовой обработки труднообрабатываемых материалов, магнитных и твердых сплавов.

Отклонение размеров профиля после электроэрозионного шлифования находится в пределах от 0,005 до 0,05 мм, шероховатость Ra = 2,50,25, производительность — 260 мм2/мин.

С появлением электрических способов обработки оказалось в принципе возможным осуществление методами электротехнологии всего комплекса операций, необходимых для превращения заго­товки в готовую деталь, включая и ее термическую обработку.

Источник: http://erozia-stanki.ru/tekhnologiya-lektro-rozionnoy-obrabotki

Технология электроэрозионной обработки

Электроэрозионная обработка металлов — технология, которая заключается в том, что между электродом-инструментом и материалом заготовки возникает горение электрической дуги, проходящее с потерей вещества между катодом и анодом.

Меняя среду, окружающую канал разряда, полярность заготовки и длительность импульсов, можно добиться контролируемого разрушения заданной поверхности детали либо формирования на ней других поверхностей.

Происходит электрическая эрозия одного или другого электрода.

Все металлы и сплавы являются хорошими проводниками, поэтому при помощи данной технологии стали доступны: электроэрозионная резка проволокой, сверление, упрочнение поверхности, тонкая шлифовка, прошивка, наращивание поверхности и копирование.

Виды электроэрозионной обработки

Электроэрозионную обработку (сокращенно ЭЭО) можно разделить на следующие виды:

  • электроискровая;
  • электроимпульсная;
  • электроконтактная;
  • высокочастотная.

При электроискровой обработке на анод-заготовку подается положительный заряд тока, а на другой электрод-инструмент — отрицательный, он является катодом. Среду, окружающую канал разряда между катодом и анодом, заполняют специальной диэлектрической жидкостью. Генератор импульсов регулирует продолжительность, а изменение емкости конденсатора управляется мощностью импульса.

Электроэрозионная резка проволокой — технология, при которой используются материалы, обладающие высокой эрозионной стойкостью.

Управляя величиной энергии импульса, можно добиться более высокой производительности или чистоты обрабатываемой поверхности.

Предварительная обработка происходит на жестких и средних режимах, а чистовая — на мягком и сверхмягком режиме, что позволяет добиться высокой точности заданных параметров воздействия. На видео показана технология:

Принцип электроимпульсной обработки заключается в том, что на обрабатываемую деталь подают отрицательный заряд тока с длительностью импульса свыше 0,001 с.

Деталь обрабатывается ионным потоком при температуре горения дуги более +5000°C, что гораздо выше температуры кипения металлов.

Скорость обработки детали возрастает многократно, но качество обрабатываемых поверхностей гораздо хуже, чем при электроискровом воздействии.

Реализация разных видов электроэрозии в станках универсального типа позволяет выполнять большой объем работ с разными исходными заданиями.

Специализированные и универсальные электроэрозионные станки позволяют изготавливать сита и сетки с размером ячеек от 0,15 до 2 мм и толщиной заготовки 2 мм с высоким уровнем производительности.

Производят прошивку отверстий, щелей и технологических полостей в металлах и сплавах толщиной до 100 мм, а также электроэрозионную шлифовку поверхностей.

Электроэрозионное упрочнение верхнего слоя металла (легирование) одним станком является важным направлением производства износостойких режущих инструментов и примером реализации электроимпульсной технологии вместо традиционной металлургии.

Электроконтактная обработка позволяет эффективно обрабатывать детали, выполненные из сверхтвердых сплавов, чугуна и титана.

С ее помощью можно производить шлифовку, прошивку фасонных отверстий, выполнять работы по чистовой резке и фрезеровке внутренних полостей.

Принцип работы станков

Электроэрозионная обработка материалов выполняется с использованием особого оборудования.

Рядом с помещенной в станок деталью устанавливается специализированный инструмент — электрод, который может иметь вид бесконечного проводника (проволочная электроэрозионная резка) или заданную форму для прошивки фасонных отверстий и окон. Обрабатываемая деталь и инструмент подключаются к источнику питания.

Комплекс деталь-инструмент помещают в ванну с жидкой диэлектрической рабочей средой или обеспечивают подачу жидкого диэлектрика в искровой рабочий промежуток между инструментом и деталью. При включении силовой части станка между ними появляется разность потенциалов, что приводит к возникновению направленного электрического разряда.

При пробивании слоя диэлектрической жидкости происходит электрическая эрозия материала. Продукты эрозии из межэлектродного промежутка удаляются принудительной подачей диэлектрической жидкости или устраняются при ее естественной циркуляции и оседают на дне ванны.

Существует разница между электроискровой технологией и режимом электроимпульсной обработки материала.

Электроимпульсный режим подразумевает наличие шагового генератора, который обеспечивает периодические разряды высокого напряжения импульсного типа. В период прохождения импульса происходит испарение и плавление материала проводника.

Меняя параметры продолжительности и мощности одного импульса, можно регулировать скорость и глубину обработки, а также полярность проводников.

Возможности оборудования

Применение электроэрозионного оборудования является более эффективным, чем механические традиционные виды обработки материалов. Широкие возможности прецизионной обработки сверхтвердых сплавов и высокая вариативность инструментов позволяют изготавливать детали на уровне качества и сложности, недоступном для традиционных механических станков.

Электроэрозионные станки позволяют производить обработку деталей с минимальными внутренними радиусами, изготавливать высокоточные штампы без дальнейшей чистовой подгонки. Исчезла необходимость проводить промежуточные операции по термообработке заготовки, оборудование позволяет осуществлять подгонку и притирку сопряженных деталей.

Электроэрозионная резка проволокой позволяет производить разделение металлов высокой прочности и сложных контуров эффективнее, чем механические станки. Скорость обработки, параллельность линий реза по всей глубине обрабатываемой заготовки и высокая точность линии кромок делают электроэрозионные установки незаменимыми в работе со сверхтвердыми материалами.

Станки с ЧПУ обеспечивают высокую точность, скорость и производительность. Электроискровое упрочнение дает возможность увеличить твердость обрабатываемой поверхности детали, тем самым позволяет существенно повысить ее износостойкость уже после формирования и обработки.

Электроэрозионная резка металла

Метод электроэрозионной резки металла (ЭЭР) позволяет выполнять обработку заготовки с более высокой скоростью, чем метод электроэрозионной контурной прошивки, т. к.

площадь обрабатываемой поверхности в единицу времени ограничена диаметром проволоки или единичного электрода инструмента.

Электроэрозионная резка не требует использования черновых и чистовых контуров-электродов, а сразу вырезает требуемый контур детали.

Электрод-проволока изготавливается из металлов и сплавов с высокой эрозионной стойкостью (латунь, вольфрам) и в процессе работы при постоянной протяжке через искровой промежуток имеет минимальный износ и постоянный диаметр. Это позволяет добиться сверхвысокой точности обработки изделия. Данный метод дает возможность проводить чистовую шлифовку деталей независимо от формы, размеров и шероховатости обрабатываемой поверхности.

Электроэрозионная резка позволяет изменять размеры металлической заготовки без нарушения ее физических свойств, что существенно увеличивает технологическую вариативность производства. Появляется возможность расширить спектр используемых металлов, материалов и сплавов в технологической линейке производства.

Электроэрозионная резка проволокой чаще всего применяется на крупных промышленных предприятиях для производства высокоточных серийных деталей, поскольку позволяет придать заготовке сложный контур и производить вырезку конических отверстий с углами до 30° при высоте обрабатываемой заготовки до 400 мм. Несомненным преимуществом данного вида обработки является тот факт, что после окончания резки деталь не требует дополнительной шлифовки, а это существенно влияет на себестоимость и скорость полного цикла изготовления.

По этой же схеме осуществляется резка заготовок с малой толщиной и различной степенью обработки поверхности металлов, т. к. воздействие электрического разряда при резке не деформирует обрабатываемую поверхность.

Электроэрозионная резка нашла широкое применение в производстве ювелирных изделий.

Технология ЭЭО позволяет также поместить нужную информацию или рисунок на тонкую заготовку без ее деформации, при этом возможно нанесение не только на металл, но и на другие виды токопроводящих материалов.

Самодельные станки

Изготовить станки для электроэрозионной обработки своими руками — трудоемкая задача. Главной сложностью станет обеспечение точности действий и получение достаточной мощности искрового разряда.

Чаще всего самодельные станки — это установки для маркировки или маломощные устройства, с помощью которых выполняется электроэрозионная резка проволокой.

Встречаются и прошивные станки для обработки заготовок из различных металлов небольшой толщины.

Добиться при работе на самодельных электроэрозионных станках такой же точности и производительности, как на установках, произведенных промышленным путем, — задача недостижимая. Для самодельного станка прежде всего нужен искровой генератор. Это самый сложный элемент, который придется сделать самостоятельно.

Чтобы аккумулировать большое количество энергии за короткий отрезок времени и выдать ее с фиксированной длительностью импульса, необходимы знания и умения далеко не рядового уровня.

Потребуется найти достаточное количество конденсаторов большой емкости; молибденовую, вольфрамовую или латунную проволоку; обеспечить систему протяжки через искровой промежуток с нужным натяжением и скоростью; синхронизировать ее подачу и намотку на барабаны; обеспечить приток диэлектрической жидкости (подойдет дистиллированная вода или масло), ее сбор и рециркуляцию.

Как результат, скорее всего, получившийся станок утратит все преимущества ЭЭО-технологии, и ленточная пила, хороший электролобзик или гравер справится с работой гораздо лучше и быстрее.

Преимущества данного вида обработки

Электроэрозионная обработка обеспечивает множество преимуществ.

Она позволяет производить сложную обработку любых токопроводящих заготовок, включая твердые кристаллы, высокопрочные сплавы, чугуны и различные металлы, не нарушая при этом физико-химических свойств материалов и игнорируя их твердость, хрупкость и вязкость.

Процесс исключает силовое воздействие на поверхность, что позволяет обрабатывать хрупкие и тонкостенные детали. Исключается использование инструментов и абразивов, превосходящих по твердости обрабатываемый материал.

Существует возможность проводить работы с большой деталью без помещения ее в специальный станок. Достаточно локализовать место работы на поверхности детали. Допускается использование одного и того же электрода-инструмента как для черновой, так и для чистовой обработки детали.

Данная технология дала возможность проводить электроэрозионную резку заготовки одновременно по двум координатам с большой точностью и высокой чистотой поверхности. Она позволяет обрабатывать внутренние технологические полости (при изготовлении резьбы) в тугоплавких материалах высокой прочности.

Электроискровой метод нанесения покрытий позволяет произвести упрочнение поверхности детали на существенную глубину. Метод электроэрозионной маркировки дает возможность нанести изображения на любые токопроводящие поверхности заготовки, в том числе имеющие малую толщину. Процесс выполняется без деформации детали, т. к. происходит пробой на фиксированную глубину материала.

Источник: https://alsver.ru/rezka/elektroerozionnaya-obrabotka-metallov

Ссылка на основную публикацию
Adblock
detector