Вольфрам: свойства и марки, области применения, продукция из металла

Изделия из вольфрама

Вольфрам: свойства и марки, области применения, продукция из металла


Характеристика вольфрама.

Вольфрам: ценный и достаточно редкий тугоплавкий металл, который за счет своих уникальных характеристик активно используется в ряде отраслей промышленности.

Основные свойства вольфрама:

– наивысшая температура плавления среди группы тугоплавких металлов – 3420 оС;

– высокая плотность –  19,3 г/см3 и *твердость (HV30 >460);

– химическая инертность: до 400оС в кислороде, до 600оС в водороде, до 700оС в аммиаке и до 800оС в угарном газе;

– сопротивление ползучести и длительная прочность (значительно более высокая, чем у молибдена, тантала, ниобия при температуре, например, 1100 °С);

– теплопроводность и красностойкость: после разогрева до красного каления и последующем охлаждении вольфрам не теряет прочности.

Вольфрам при температуре 1650°С имеет самый высокий предел прочности на разрыв и отличную коррозионную стойкость. Вместе с ростом температуры пластичность вольфрама повышается при всем сохранении прочностных характеристик.
Обработка вольфрама проводится лишь при высоких температурах, в обычных условиях этот материал достаточно ломкий.

Вольфрам благодаря исключительной тугоплавкости и высоким прочностным свойствам является наиболее перспективной основой для материалов и изделий, работающих в условиях высокотемпературных и радиационных нагрузок.

Низкие показатели удельного электрического сопротивления, теплового расширения, электронной эмиссии делают вольфрам незаменимым конструкционным материалом в области высоких температур.

Кроме того, изделия из вольфрама используются в крайне агрессивных средах без риска их деформации или поломки.

Применение вольфрама

Вольфрам и сплавы на его основе широко применяются для изготовления тиглей, экранов, нагревателей, различных изделий, частей электрических вакуумных печей, а также многих других изделий, работающих в области высоких температур:

– в качестве оснастки высокотемпературных водородных и вакуумных печей;

– для изготовления катодов;

– как основа для неплавящихся сварочных электродов;

– при производстве стекла (плавящие электроды и мешалки из вольфрама);

– для прессования горячих металлов;

– при производстве жаропрочных деталей ракет в космической отрасли;

– как экраны для ослабления потока радиоактивного излучения в ядерной энергетике и т.д.

Изделия, выполненные из сплавов вольфрама, отличаются долговечностью, прочностью и высоким качеством. Также на нашем предприятии разработана уникальная технология производства вольфрамовой оснастки путем сварки вольфрама.

Вы можете приобрести изделия из вольфрама и его сплавов (тигли, нагреватели, детали, элементы технологической оснастки, экраны и т.д.) в количестве и конфигурации, удовлетворяющей потребностям вашего производства. При этом цена продукции из вольфрама будет значительно ниже, чем у остальных европейских поставщиков аналогичных изделий.

Мы осуществляем сложную механическую обработку вольфрама.

Мы предлагаем нашим покупателям широкий спектр изделий из вольфрама, в том числе, изготовление деталей под заказ по чертежам заказчика.

Источник: http://rm.gkmp32.com/volfr

Тяжелые вольфрамовые сплавы ВНЖ, ВНМ, ВНД-МП, ВД-МП

Вольфрам — самый тугоплавкий металл из известных человечеству.

Он также имеет очень высокую плотность, одну из самых высоких среди металлов, что, в свою очередь, наделяет вольфрам отличными радиационно-защитными свойствами.

Тугоплавкость и высокая плотность — эти два основных свойства и определили его чрезвычайную важность в современных технологиях и направления его использования.

Но современные направления науки и техники порой требуют от тугоплавких металлов, и в частности, от вольфрама, такой совокупности  свойств, которую вольфрам в чистом виде не силах обеспечить. К примеру, часто возникает необходимость изготовления деталей  очень сложной формы.

Вольфрам является довольно хрупким материалом при нормальных условиях, что делает его обработку затруднительной. Другой пример — высокая электропроводность при высоких температурах.

Электропроводность вольфрама не сравнится с электропроводностью меди, но при высоких температурах медные контакты использовать просто  невозможно.

Поэтому в таких случаях применяют так называемые тяжелые сплавы на основе вольфрама или просто вольфрамовые сплавы.Чаще всего это сплавы вольфрама с никелем, железом, медью или сразу с несколькими металлами. Содержание вольфрама, как правило, составляет от 90% до 98% по массе. Фактически, это не совсем сплавы, а так называемые псевдосплавы.

Такое название они получили из-за особенностей технологии их производства. Дело в том, что входящие в состав вольфрамовых псевдосплавов  компоненты имеют существенно различные физические свойства, главным образом, температуру плавления. Сделать из них сплав в привычном понимании почти невозможно, т.к.

при температуре плавления вольфрама большинство металлов находятся в состоянии газов или летучих жидкостей. Поэтому псевдосплавы изготавливают методом порошковой металлургии. Порошки компонентов псевдосплава смешиваются, прессуются и спекаются в присутствии жидкой фазы более легкоплавких металлов и твердой фазы вольфрама.

Медь, никель и железо служат связующим веществом для вольфрамовых зерен, что обеспечивает увеличение пластичности, обрабатываемости и электропроводности.

Марки вольфрамовых сплавов, получивших наибольшую популярность в России:

  • ВНЖ 7-3 (с содержанием 7% никеля и 3% железа)
  • ВНЖ-95 (с содержанием 3% никеля и 2% железа)
  • ВНЖ-97.5 (с содержанием 1.5% никеля и 1% железа)
  • ВНМ 5-3 (с содержанием 5% никеля и 3% меди)
  • ВНМ 3-2 (с содержанием 3% никеля и 2% меди)
  • ВНМ 2-1 (с содержанием 2% никеля и 1% меди)
  • ВД-20 (с содержанием 80% вольфрама и 20% меди)
  • ВД-25 (с содержанием 75% вольфрама и 25% меди)
  • ВД-30 (с содержанием 70% вольфрама и 30% меди)

Некоторые области применения вольфрамовых сплавов:

Главные области применения вольфрамовых сплавов определяются их свойствами.

К примеру, одним из важнейших свойств вольфрамовых сплавов являются высокие показатели радиационной защиты, что главным образом определяется высокой плотностью этих сплавов (вольфрамовые сплавы более чем в 1,5 раза тяжелее свинца).

Тяжелые вольфрамовые сплавы были признаны лучшим материалом для защиты от гамма-излучения, по сравнению с традиционными свинцом, сталью, чугуном и водой. Данное свойство обусловило широкое применение сплавов ВНЖ и ВНМ в следующих областях:

  • Емкости для хранения радиоактивных веществ
  • Детали приборов радиоактивного каротажа
  • Оборудование неразрушающего контроля
  • Дозиметрическое оборудование и радиационный контроль
  • Коллиматоры, защитные экраны и другие детали различного оборудования

Кроме этого, вольфрамовые сплавы широко применяются для изготовления различного рода утяжелителей, электрических контактов, а также комплектующих продукции оборонной промышленности.

Помимо вольфрамовых псевдосплавов,  также получили распространение и сплавы на основе молибдена.

ООО «ЕРГАРДА» изготовит изделия любой сложности из вольфрамовых сплавов по Вашему заказу.

Вы всегда можете уточнить цены на вольфрамовые сплавы и сделать заявку, позвонив по телефону (495) 287-30-58 или отправив запрос на наш e-mail parafin@ergarda.com или факс (495) 612-00-88.

Источник: https://ergarda.com/tugoplavkie-metally-i-splavy/volfram/tyazhelye-volframovye-splavy.html

Вольфрам

Вольфрам благодаря исключительной тугоплавкости и высоким прочностным свойствам является наиболее перспективной основой для материалов и изделий, работающих в условиях высокотемпературных и радиационных нагрузок.

Вольфрам, относящийся к Vl А группе, характеризуется максимум силы межатомной связи, наивысшей среди тугоплавких металлов температурой плавления 3420 оС, высокой плотностью 19,3 г/см3 , высокими прочностью, теплопроводностью, твердостью (HV30 >460), сопротивлением ползучести и длительной прочностью (значительно более высокой, чем у молибдена, тантала, ниобия при температуре, например, 1100 °С). Сравнительно с молибденом чистый вольфрам обладает более высокой температурой рекристаллизации – 1350 °С приблизительно, на 4-5 порядков меньшим давлением пара и скоростью испарения, меньшим коэффициентом термического расширения (4,2·10-6 при 20 °С) и низким электрическим сопротивлением (0,05·10-6 Ом·м).

С 1965 года АО «ПОЛЕМА» начало активно осваивать производство высокочистого вольфрамового порошка, проката и композиционных материалов на основе вольфрама.

Современные технологии порошковой металлургии, используемые АО «ПОЛЕМА», обеспечивают высокую степень чистоты вольфрама по металлическим и примесям внедрения (C,N,O,H), мелкозернистую структуру, необходимую для применения в электронной промышленности и в качестве жаропрочного конструкционного материала в электротехнике и других устройствах, работающих при экстремально высоких температурах.

АО «ПОЛЕМА» производит широкий спектр изделий из вольфрама, обладающий выдающимися характеристиками и отвечающий самым высоким требованиям.

Изделия из вольфрама изготавливаются из вольфрамового порошка собственного производства.

В качестве исходного сырья используется оксид вольфрама с массовой долей WO3 99,99 %, что гарантирует высокий уровень чистоты получаемого порошка и, как следствие, получаемой из него продукции.

Программа выпуска изделий из вольфрама включает следующие продукты:

  • Вольфрамовый порошок
  • Вольфрамовые листы, пластины, распыляемые мишени
  • Вольфрамовые тигли
  • Композиты на основе вольфрама W-Cu, W-Ni-Cu
Типичный химический состав вольфрамового порошка PW 99.95,
используемого для производства изделий

Элемент Ppm Элемент Ppm Элемент Ppm
Li < 0,01 Cr ≤ 2 Ru < 0,01
Be < 0,01 Mn ≤ 0,1 Cd < 0,1
B < 0,1 Fe ≤ 15 In < 0,01
C ≤ 30 Co < 0,2 Sn < 0,2
N ≤ 11 Ni ≤ 12 Sb ≤ 1,6
O ≤ 170 Cu ≤ 1 Cs < 0,1
Na ≤ 6 Zn < 0,1 Ba < 0,1
Mg ≤ 0,3 Ge < 0,01 Ta ≤ 4
Al ≤ 7 As ≤ 7 W matrix
Si < 5 Se < 0,1 Pt < 0,1
P < 10 Rb < 0,1 Tl < 0,1
K ≤ 10 Sr < 0,1 Pb ≤ 0,3
Ca ≤ 6 Y < 0,01 Bi < 0,1
Sc ≤ 0,1 Nb ≤ 1 U ≤ 2,2
Ti ≤ 0,6 Mo ≤ 38 S ≤ 30
V ≤ 0,3 Rh < 0,01
Ga, Zr, Pd, Ag, Te, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,Hf, Re, Ir, Au, Th в каждом

Источник: http://www.polema.net/volfram.html

Применение вольфрама

Вольфрам в современной технике играет исключительно важную роль. Он применяется в сталелитейной промышленности, при производстве твердых сплавов , при производстве кислотоупорных и других специальных сплавов, в электротехнике, при производстве красителей, в качестве химических реактивов и пр.

Около 70% всего добываемого вольфрама идет на производство ферровольфрама, в виде которого он вводится в сталь.

В наиболее богатых вольфрамом и наиболее распространенных вольфрамовых сталях( в быстрорежущих) вольфрам образует сложные вольфрамсодержащие карбиды, увеличивающие твердость стали, в особенности при повышенных температурах(красностойкость), Известно, что введение в практику работы металлообрабатывающих заводов резцов из стали, содержащей вольфрам, позволило во много раз увеличить скорости резания. В настоящее время резцы из быстрорежущей стали уступают место резцам из металлокерамических твердых сплавов, изготовляемых на основе карбида вольфрама с добавлением цементирующей добавки.В некоторые твердые сплавы вводятся также карбиды титана, тантала и ниобия. Современные скорости резания, достигнутые новаторами производства , получены именно с резцами из твердых сплавов.Сплавы вольфрама с другими металлами имеют самое разнообразное применение: никельвольфрамохромовый сплав отличается кислотоупорными свойствами. Обращают на себя внимание сплавы вольфрама, обладающие повышенной жаропрочностью: например, добавка 1% ниобия, тантала, молибдена, образующих с вольфрамом твердый раствор, повышает температуру плавления металла выше 3300 °C., тогда как добавка 1% железа, весьма мало растворимого в вольфраме, понижает температуру плавления до 1640°C. В США широко развернуты исследования в этой области.

Металлический вольфрам находит разнообразное применение в электро-и рентгенотехнике. Из вольфрама изготовляют нити накала электрических ламп.

Вольфрам для этой цели особенно пригоден благодаря большой тугоплавкости и очень малой летучести: при температурах порядка 2500°C, при которых работают нити накала , упругость паров вольфрама не достигает 1 мм рт.ст.

Из металлического вольфрама изготовляют также нагреватели для электрических печей, выдерживающие температуры до 3000°C.Металлический вольфрам применяется для антикатодов рентгеновских трубок, для различных деталей электровакуумной аппаратуры, для радиоприборов, выпрямителей тока и.т.д.

Читайте также:  Выбор газовой ручной горелки для использования приспособления в быту

Тонкие вольфрамовые нити применяются в гальванометрах. Подобные же нити применяются для хирургических целей. Наконец, из металлического вольфрама изготовляются различные спиральные пружины, а также детали, для которых требуется материал, устойчивый по отношению к различным химическим воздействиям.

Соединения вольфрама применялись очень широко как красители. В Китае сохранились старинные, изделия из фарфора, окрашенного в необычный цвет “персика”, исследования показали, что краска содержит вольфрам.

Соли вольфрама применяются для придания огнестойкости некоторым тканям. Тяжелые дорогие шелка обязаны своей красотой вольфрамовым солям, которыми они пропитаны.

Чистые вольфрамовые препараты применяются в химическом анализе как реактивы на алкалоиды и другие вещества. Соединения вольфрама применяются также в качестве катализаторов.

  1. Мы предлагаем следующую продукцию из вольфрама: вольфрамовую полосу, вольфрамовую проволоку, вольфрамовый пруток, вольфрамовый штабик.

Источник: https://www.ural-metall.com/primenenie-wolframa

Вольфрам

Метаторг – цены на вольфрам на складе в Москве.

Вольфрам и его особенности

Вольфрам – это металл, которому характерны особая тяжесть, твердость и тугоплавкость. Его температура плавления составляет 3380°C, а кипения – 5900°C, при этом скорость испарения остается малой, даже при нагреве до 2000°C.

Вольфрам обладает высоким приделом прочности на разрыв и отличной коррозионной стойкостью. Чаще всего, его применяют в качестве легирующей добавки при создании высокопрочных сплавов. Удельное электрическое сопротивление вольфрама в нормальных условиях составляет 55×10-9 Ом×м.

Металл устойчив к воздействию кислот. В нагретом состоянии (до 1600°C) поддается обработке.

Недостатком вольфрама является его склонность к ломкости при низких температурах. Также, к свойствам, которые сокращают его область применения, относится большая плотность. Вольфрам при невысоких температурах не устойчив к окислению.

Ассортимент продукции из вольфрама

Вольфрамовые прутки

Данный тип продукции из вольфрама является наиболее распространенным. Получают его из штабиков, которые подвергаются ковке в нагретом состоянии.

Ковка осуществляется в несколько этапов, количество которых зависит от заданного диаметра прутка. Температура нагрева штабика зависит от марки данной продукции, например, для марок ВТ, ВЛ, ВИ она выше, чем для ВА и ВЧ.

В качестве заготовки для получения прутка, могут использоваться и вольфрамовые слитки, полученные в процессе плавки.

Применяя их, горячую ковку не проводят, в связи с тем, что структура металла крупнокристаллическая и при проведении данного процесса это чревато образованием трещин и разрушением.

При получении вольфрамовых прутков из слитков, последний дважды подвергается горячему прессованию при температуре 1800-1900 °С и при 1350-1500 °С. Только после этого осуществляют горячую ковку заготовки.

Вольфрамовые прутки широко применяются в промышленности, чаще всего в качестве неплавящихся сварочных электродов (марка ВТ, ВИ, ВЛ) и нагревателей, которые работают в среде вакуума, водорода и инертного газа (марка ВА, ВР, МИ). Данное изделие может применяться в качестве катода радиолам, электронных и газоразрядных приборов.

Вольфрамовые электроды

С их помощью сваривают цветные металлы и их сплавы, высоколегированные стали. Используют вольфрамовые неплавящиеся электроды с присадочной проволокой. Применяя данную продукцию, сваривают даже детали с разным химическим составом, при этом сварной шов имеет повышенную прочность.

Вольфрамовые электроды используют в процессе сварки в среде аргона. За счет их применения сварной шов получается качественным. Такие электроды могут быть получены, как с чистого вольфрама, так и из его сплавов. Наличие присадок положительно влияет на качество процесса.

Например, электрод из чистого вольфрама ЭВЧ имеет низкую зажигаемость дуги, а вот если в сплав добавлен цирконий, то она повышается. Торирование, также, улучшает данное свойство и, к тому же, положительно влияет на срок службы такого металлопроката (электроды марки ЭВТ-15).

Добавка иттрия позволяет использовать вольфрамовые электроды в токовых средах, как с дугой переменного, так и постоянного тока (электроды марки ЭВИ-1, ЭВИ-2, ЭВИ-3).

Производство вольфрамовых электродов осуществляется в соответствии с ГОСТ 23949-80. Вольфрамовая проволока. Это наиболее распространенный вид продукции из вольфрама.

В качестве заготовок для её производства используют вольфрамовые прутки 2,75 мм в диаметре. Получают проволоку способом волочения, подвергая нагреву газовой горелкой или электрическим нагревателем.

Заготовка, вместе с фильерой, в начале нагревается до температуры 1000 °С, а в конце до 400-600 °С.

Если диаметр вольфрамовой проволоки до 1,26 мм, то для её волочения применяют прямолинейный цепной волочильный стан, если его значение находится в приделах от 1,25 до 0,5 мм – блочный стан, если оно составляет от 0,5 до 0,25 мм – машина однократного волочения.

Подвергаясь ковке и волочению, кристаллы металла разрушаются и вытягиваются вдоль оси, структура преобразовывается в волокнистую. Благодаря чему обеспечивается повышенная прочность вольфрамовой проволоки.

После волочения поверхность вольфрамовой проволоки очищают от графитовой смазки, подвергая изделие отжигу, химическому или электролитическому травлению, электролитической полировке.

Последний метод положительно влияет на его механическую прочность (увеличивает на 20-25%).

Из вольфрамовой проволоки изготавливают элементы сопротивления нагревательных печей, которые работают в среде вакуума, водорода, инертного газа и их рабочая температура достигает 3000 °С. Также, из неё производят термопары (сплав марки ВР 5/20).

Производится вольфрамовая проволока в соответствии с ГОСТ 18903-73.

Вольфрамовый порошок

Данный продукт в чистом виде – исходное сырье для компактного вольфрама. Порошковый карбид-вольфрам – это легирующая добавка, которая применяется при производстве твердых сплавов.

В зависимости от величины частиц, набора зерен и других параметров определяют назначение вольфрамовых порошков.

Содержит вольфрамовый порошок примеси кислорода (от 0,05% до 0,3%) и металлические примеси, доля которых незначительна. В его состав входят присадки металлов (алюминия, тория, лантана и других), которые положительно влияют на его конечные свойства.

Вольфрамовые листы, ленты, фольга, пластины

Этот плоский металлопрокат получают методом плоской ковки и проката. Заготовкой является вольфрамовый штабик, размеры которого могут быть различными.

Сначала вольфрамовый штабик подвергают ковке пневмомолотом в разогретом состоянии до 1500-1700 °С, в ходе процесса температура снижается до 1200-1300 °С.

Операция заканчивается, когда толщина поковки составляет 8-10 мм (штабик сечением 25×25 мм) или 4-5 мм (штабик сечением 12×12 мм).

Затем полученную поковку прокатывают на прокатном стане, предварительно подогревая её до 1300-1400 °С. В ходе процесса температуру снижают до 1000-1200 °С. Таким способом получают сортовой металлопрокат из вольфрама толщиной до 0,6 мм.

Если этот параметр необходимо уменьшить – проводят холодную прокатку. Тонкий лист толщиной до 0,125 мм и фольгу толщиной 0,02-0,03 мм из вольфрама, также, можно получить.

Для этого применяют прокатку в пакетах, которые состоят из вольфрамовых лент (внутренний слой) и молибденовых пластин (наружный слой).

Также, для производства вольфрамовых листов, ленты и пластин, могут использоваться слитки из вольфрама, полученные методом плавки. Такие заготовки подвергаются предварительному прессованию, а затем деформированию на двухвалковых прессах.

Применяется данный сортовой металлопрокат из вольфрама при высоких температурах, за счет его высоких жаропрочностных характеристик.

Вольфрамовый лист используется при изготовлении оснастки высокотемпературных печей, а, также, в качестве экрана в ядерной энергетике, который способен ослабить поток радиоактивного излучения.

Вольфрамовые пластины применяют в процессе металлизации полупроводников в интегральных микросхемах.

Сортовой металлопрокат из вольфрама нашел свое применение в радиоэлектронике, машиностроении и во многих сферах промышленности.

Источник: http://meta-torg.ru/volfram.html

ПОИСК

Применение чугуна с шаровидным графитом как износостойкого материала.

Расширению областей применения чугуна с шаровидным графитом как износостойкого материала способствует то обстоятельство, что, применяя соответствующую термическую обработку, можно получить наиболее приемлемую структуру чугуна, хорошо работающего на износ.

Износостойкость чугуна с шаровидным графитом, кроме того, может быть повышена за счет его легирования такими элементами, как вольфрам, молибден, медь, титан, марганец, никель и др.  [c.168]
Области применения. До 1939 г.

различные сплавы кобальт – хром — вольфрам находили применение главным образом для изготовления режущих инструментов, твердых сплавов и коррозионностойких отливок. Путем  [c.306]

Главная область применения вольфрама — производство сталей (около 85%).

Он входит в состав жаропрочных сверхтвердых сталей (инструментальные, быстрорежущие) и сплавов (победит, стеллит и др.). Чистый вольфрам используется в электротехнике (нити ламп накаливания) и радиоэлектронике (катоды и аноды электронных приборов), для спиральных нагревателей в электрических печах, электродов, различных деталей для высоковакуумных и рентгеновских приборов, при атомно-водородной сварке.  [c.201]

Области применения. В светотехнике вольфрам и вольфрам, легированный 5 % рения, используется для спиралей и других типов ламп накаливания.  [c.585]

Порошковые шприц-пистолеты. Применяются только для напыления очень тугоплавких Металлов или таких, которые нельзя изготовить в виде проволоки (твердые металлы, вольфрам, сталь У2А и др.). Другая область применения пистолетов этого рода — распыление неметаллов, в частности пластмасс или керамических материалов, например А Оз [42].  [c.636]

Комплексные силицидные покрытия для вольфрама и его сплавов пока находятся в стадии лабораторных разработок и не имеют суш,ественных преимуществ перед чистыми силицидными покрытиями [10, 11, 72, 260].

Поскольку основные области применения вольфрама связаны с температурами 1900° С и выше, требования к защитным покрытиям для него более жестки, чем для менее тугоплавких металлов. Покрытия на основе силицидов малоэффективны при температуре 1700° С и выше, т. е.

именно в той температурной области, для которой вольфрам и сплавы на его основе представляют наибольший интерес. В табл. 85 приведены результаты циклических испытаний на описание различных типов комплексных покрытий.  [c.328]

Основная область применения молибдена — металлургия. Молибденовые стали характеризуются повышенной прочностью, сопротивляемостью износу и ударным нагрузкам. Особенно высока жаропрочность молибденовых сталей, причем при равных присадках она значительно больше, чем у вольфрамовых. В быстрорежущих сталях молибден может заменять вольфрам.

Стали, легированные молибденом, применяются для изготовления брони и оружия — это броневые, орудийные и ружейные стали. Молибден широко также используется в конструкционных сталях, которым он сообщает высокие прочностные и технологические свойства. В сочетании с никелем, кобальтом и хромом молибден входит в состав кислотоупорных и жаростойких сталей.

[c.109]

Общеизвестно широкое применение цветных металлов и сплавов на их основе в различных области производства. Так, алюминиевые, магниевые и титановые сплавы широко применяются в авиационной промышленности.

В то же время изделия из легких сплавов используют в строительстве, транспортном машиностроении, приборостроении, судостроении и других отраслях промышленности.

Медь обладает высокой электрической проводимостью и широко применяется в электротехнике она является также основой многих важных промышленных сплавов (например, латуней, бронз и др.). Основой многих жаростойких, жаропрочных и электротехнических сплавов является никель.

Одновременно он часто используется как легирующий элемент в специальных сталях. В качестве конструкционных материалов для новой техники широко используют тугоплавкие металлы (вольфрам, молибден, ниобий, хром и др.), а также сплавы на их основе.  [c.176]

Несмотря на то, что объем производства порошковых сплавов невелик и составляет всего 0,1% от обш,его объема производства металлов, они имеют очень большое значение в народном хозяйстве и область их применения чрезвычайно широка.

При этом изготовление многих сплавов практически возможно только из порошка, например, изготовление твердых металлокерамических сплавов, керметов, сплавов из тугоплавких металлов — вольфрам, молибден, тантал, ниобий — или композиций этих металлов с легкоплавкими металлами, или из металлов с неметаллическими материалами.

Читайте также:  Как правильно выбрать сверла по металлу

Многие детали из порошковых сплавов отличаются лучшими качествами и дешевле, чем из обычных металлов.  [c.477]

Металлические связи, появляющиеся между ближайшими соседями вдоль направлений (111) вследствие перекрывания (е5)-орбиталей и концентрации d-электронов между ядрами, упрочняют и стабилизируют ОЦК структуру от металлов группы скандия (III гр.) и титана (IV гр.) к металлам VI группы (хром, молибден, вольфрам).

Близость электронного строения, определяющая идентичность ОЦК структур, способствуют образованию широких или непрерывных областей ОЦК твердых растворов между тугоплавкими металлами IV—VI групп и создают широкие возможности твердорастворного упрочнения путем взаимного легирования этих металлов.

Наряду с повышением высокотемпературной прочности такое легирование в ряде случаев позволяет значительно повысить жаростойкость при газовой коррозии в агрессивных средах.

Введение в тугоплавкие ОЦК металлы до 25—30% рения, а также рутения или осмия, которые вследствие неполной ионизации имеют плотную гексагональную структуру, но при растворении в ОЦК металлах передают в коллективизированное состояние все валентные электроны, приводит к сильному повышению пластичности ванадия,, хрома, молибдена и вольфрама ( рениевый эффект ). Такое повышение пластичности хрупких металлов интересно с точки зрения теории легирования и нашло определенное практическое применение  [c.39]

Высокая чистота потребовалась в последнее время не только для металлов. Для применения в области высоких температур широко используют в настоящее время силициды, карбиды, бориды таких металлов, как тантал, вольфрам, ниобий и др.

Так, в литературе указывается, что для изготовления различного рода изделий, например подшипников, работающих при высоких температурах, для производства режущего инструмента и деталей, работающих на износ, применяют борид титана высокой чистоты.

[c.526]

Сведения о применении вакуумных микровесов для изучения процессов в чистом фторе или его соединениях в литературе отсутствуют.

Объясняется это, по-видимому, тем, что к общим трудностям использования такого чувствительного вакуумного прибора, как микровесы, добавляются еще трудности, связанные с коррозионной агрессивностью фтора и его соединений, которая сильно ограничивает возможности выбора материалов для изготовления микровесов.

В частности, невозможно применение таких классических по своим упругим свойствам материалов, как кварц и вольфрам, являющихся основными для изготовления практически всех известных в настоящее время моделей вакуумных микровесов. Поэтому всякие новые данные в этой области представляют большой интерес.  [c.152]

Этот метод заслуживает дальнейшего углубленного исследования с целью выяснения областей наиболее рационального его применения.

При этом целесообразно проведение экспериментов над парами металлов, которые не представляется возможным или затруднительно соединить обычными методами.

К числу таких пар следует отнести пары углеродистая сталь + алюминий, нержавеющая сталь + алюминий, сталь + серебро, сталь + титан, сталь + молибден, сталь + вольфрам, сталь + тантал, сталь хастеллой и другие.  [c.203]

Легированная сталь, В рассмотрение входят следующие присадочные металлы марганец, никель, хром, вольфрам, молибден, ванадий и кобальт.

Из них марганец и никель оказывают действие на увеличение области — гамма (аустенит). Применение конструкционная сталь.

Хром, вольфрам, молибден и ванадий должны быть отмечены как возбудители образования карбида. Применение инструментальная сталь.  [c.1032]

В энергетических ядерных реакторах. Широкий температурный интервал существования жидкой фазы металлического галлия, низкое давление его паров и малое сечение захвата нейтронов являются ценными свойствами для его применения в качестве теплоносителя.

Препятствием к применению галлия в этой области служит его активное взаимодействие при рабочих температурах с большинством конструкционных материалов. Наиболее стойки против действия галлия ниобий (до 400°С), тантал (до 450° С) и вольфрам (до 800°С).

Эвтектический сплав Ga — Zn — Sn оказывает меньшее коррозионное действие на металлы, чем чистый галлий.  [c.413]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты.

Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3).

Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде.

Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1).

По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными.

На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

Стеллиты. В 1899 г. Хейнс разработал сплав кобальта с хромом, обладавший стойкостью к действию паров химических веществ и бапьшой твердостью вплоть до красного каления. Сплав не поддавался обработке на хо лоду, но его можно было ковать при ярко-красном калении. В 1908 г.

Хейнс разработал сплав для изготовления режущих инструментов с кромкой, как у отпущенной стали. Путем введения добавок вольфрама, молибдена и углерода к сплаву на основе кобальта и хрома была превзойдена в этом отношении быстрорежущая сталь.

Блаюдаря этому сплавы кобальт — хром вольфрам получили собственную область применения и были названы стеллитами (латин. si Ua — звезда).  [c.306]

Наиболее огнеупорная, а также наименее химически активная окись — окись тория. Она пригодна для применения в тиглях, предназначенных для сплавов с очень высокой температурой плавления. Тигли, набитые окисью тория, могут быть применены до 2700°.

Окись магния, окись бериллия и окись циркония тоже представляют собой материалы с высокими огнеупорными свойствами, но они более химически активны и поэтому менее пригодны, чем окись тория.

Окись алюминия имеет максимальную температуру службы до 1900—1950°, что является пределом, до которого можно применять оптический пирометр с исчезающей нитью, смотровой трубой из корундиза и экраном как источником излучения абсолютно черного тела.

Современное производство прямых непористых смотровых труб из окиси тория значительно расширяет область применения этого метода. При более высоких температурах возможно измерение лучеиспускания непосредственно поверхности металла только оптическим пирометром или фотоэлектрическим элементом.

В этом случае поверхность металла не удовлетворяет условиям излучения абсолютно черного тела, и поэтому такой метод можно применять только в том случае, если известны данные об эмиссионной способности металла и если для градуировки имеются в распоряжении металшы с известной точкой плавления и эмиссионной способностью, близкой к исследуемому сплаву. Однако точность такого метода не очень высока. Подробности мы рассматриваем ниже при описании метода Мюллера. Вольфрам-ирридиевые, вольфрам-мо-либденовые и различные другие термопары могут быть применены для измерения высоких температур однако эти термопары нельзя считать удовлетворительными ввиду трудности получения повторимых результатов (см. ниже).  [c.179]

Контакты, применяемые в различных искровых приборах, контакторах и тому подобных изделиях, изготовляются из порошков, состояпдих из металлов, обладающих высокой электропроводностью (медь, серебро), и металлов, обладающих высокой прочностью (вольфрам), или же из смеси таких металлов с некоторым небольшим количеством графита. Для контактов такого рода характерным является сочетание высокой электропроводности с хорошей коррозийной устойчивостью и механической прочностью. Химический состав, свойства и область применения контактов приведены в табл. 120.  [c.214]

Рений может найти применение в самых различных областях, однако из-за высокой стоимости и редкости в настоящее время этот металл не применяется в широком промышленном масштабе.

По-вндимому, наиболее перспективно применение рения в электронике и в области измерения высоких температур (рений-вольфрамовые термопары, работающие при температурах выше 2000″).

Другие возможные примеры применения реиия, основанные на его высокой температуре плавления, приведены в патенте фирмы Меллори энд компани [94]. Описан сплав, содержащий вольфрам, молибден и рений, из которого изготовляются электрические контакты.

Сплавы платины и рения или платины и рения вместе с железом, родием и иридием, применяемые для термопар, описаны в английских патентах [16, 17]. Аналогичные сплавы описаны Гёдеке [31].  [c.632]

Материалы кернов. В качестве материалов для изготовления кернов получили применение различные сорта никеля, молибден, тантал и вольфрам, отвечающие в той или иной мере совокупности требований, предъявляемых к металлической части оксидных катодов.

Основными из этих требований являются высокая температура плавления и малая скорость иапарения, химическая устойчивость к покрытию и газам, выделяющимся при откачке и работе приборов, механическая прочность и формоустойчивость в области высоких температур, хорошая обезгаживаемость и положительное влияние ка эмиссионные свойства катода.  [c.235]

В последнее время все большее применение получает более чистый молибден, подвергнутый дугово.му вакуумному или электроннолучевому переплаву, а так-ж элементами приводит к его упрочнению и повышению пластичности.

Особенно эффективное влияние на молибден, так же как и на вольфрам, оказывает рений, который образует с ним широкую область твердых растворов. Рений сушественно упрочняет молибден, в то же время уменьшает его чувствительность к примесям внедрения и хладноломкости, повышает температуру рекристаллизации.

Легирование молибдена небольшими количествами титана и циркония (до 1%) приводит к значительному его упрочнению при комнатной н повышенной температурах. Эти легирующие элементы образуют с углеродом, всегда присутствующим в молибдене, дисперсные частицы карбидов.  [c.

242]

Согласно действующему положению о МПТШ в редакции 1960 г. [2] в области температур выше 1769° С имеются только три реперные точки, причем находятся они на значительном расстоянии друг от друга.

Осуществление этих точек связано либо с применением дорогостоящих и сравнительно редких материалов (родий и иридий), либо требует применения специальных атмосферных условий (вольфрам). Поэтому изучение температуры плавления других веществ, которые могли бы служить в качестве вторичных реперных точек выше 2000° С, представляет значительный интерес.  [c.147]

Источник: http://mash-xxl.info/info/59162/

Вольфрамовый сплав для военной промышленности

Почему в военной промышленности используют тяжелые сплавы вольфрама?

В настоящее время тяжелый сплав вротфрама все чаще применяют в качестве сырьевого материала для производства частей продукции военного назначения, таких как пули, танки и снаряды, шрапнелевая головка, граната, охотничье ружье, пуленепробиваемые транспортные средства, танки, пушки, огнестрельное оружие и т.д. Основное назначение вольфрамовых тяжелых сплавов можно найти в снаряде с кинетической энергией, где вольфрамовые сплавы конкурируют с обедненным ураном (ОУ). Последние исследования, проводимые в военно-исследовательской лаборатории показывают, что превосходные свойства ОУ появились в результате его способности локализовать сдвиг при баллистическом проникновении. Таким образом, было доказано, что если локализованный сдвиг можно придать вольфрамовым тяжелым сплавам, эти сплавы могут проявлять проникновенную способность, как и обедненный уран (который стал экологическиой проблемой).
Читайте также:  Фрезы для ручного фрезера по дереву

Вы можете представить себе снаряд, падающий с высоты с бомбардировщика, использующий кинетическую энергию, чтобы проникнуть в броню, а затем производящий ядерный взрыв, чтобы уничтожить цель.

Проблемой таких снарядов является огромное применение тапла снаряда перед ударом с мишень (поверхности) на сотни метров в секунду.

Эта проблема частично решается с помощью применения таких металлов, как вольфрам (с гораздо более высокой температурой плавления, чем сталь), а также изменение формы снаряда (например, стрела).

(Вы можете получить дополнительную информацию по http://en.wikipedia.org/wiki/Nuclear_bunker_buster)

В самом деле, во времена Второй мировой войны вольфрам уже был использован в качестве важного сырья для производства оружия для оборонной промышленности. Многочисленные запасы вольфрамовой руды нашли в Португалии, которые используются для производства вольфрамовых концентратов.

Свойства и применение вольфрамовых тяжелых сплавов в военной промышленности

В целях сокращения импользования экологически опасных материалов в военной области, вольфрам используется как нетоксичный заменитель свинца и обедненного урана в пулях и гильзах.

В настоящее время широко используются металлы с высокой плотностью, такие как вольфрам; цель заключается в создании функциональных, с высокой плотностью, нетоксичных оружейных снарядов с управляемым ударным поведением.

Благодаря большой твердости и стойкости к высоким температурам, на сегодняшний день вольфрам был принят в оборонной промышленности.

Главное применение в военоой промышленности:* Пули из вольфрамового сплава* Шрапнелевая головка* Балансировочный шар для ракет и самолетов* Ядро для измерений бронебойных снарядов* Снаряд с кинетической энергией* Броня и корпуса* Граната* Компоненты ракеты

Мы можем предложить Вам стержень из тяжелого сплава вольфрама, шар, куб, цилиндр, блок и т. д. для военного назначения, такого как бронебойные пули и т.п.

Мы рады возможности сотрудничать с нашими клиентами в разработке индивидуальных запросов. Наша миссия состоит в удовлетворении индивидуальных потребностей клиента. Гибкость это наша сила.

Мы гордимся тем, что нам удается найти правильное решение проблемы клиента.

Для дополнительной информации, пожалуйста, свяжитесь с нами по sales@chinatungsten.com sales@xiamentungsten.com.

Ниже приведены изображения изделий , предлагаемых CTOMS

                           Кубы из вольфрамового сплава
R5×5×5mm R3×3×3mm R3.2×3.2×3.2mm

Источник: http://www.tungsten-alloy.com/Russian/Defense-Application.html

Область применения, формула и свойства вольфрама

Образование 5 января 2017

Что представляет собой вольфрам? Основные свойства данного элемента базируются на особенностях его химического строения. Учитывая востребованность вольфрама, необходимо детальнее разобрать его строение.

Положение в таблице Менделеева

Рассматривая основные свойства вольфрамам, начнем с того, что он имеет 74-й порядковый номер. При нормальных условиях он собой представляет переходный металл, имеющий серо-серебристый цвет.

Вольфрам твердый, обладает металлическим блеском. Это самый тугоплавкий элемент, большей температурой плавления обладает только углерод.

Электронная формула: KLMN5s25p65d46s2, Eион (Ме => Ме+ + e) = 7,98 эВ.

История происхождения

Своему необычному названию данный металл обязан минералу вольфрамиту. «Волчья пена» известна с 16 века. Такое необычное наименование минерала объясняется наличием в нем оловянных руд. Вольфрам мешал выплавлять олово, переводил его в пену из шлаков. Какие физические свойства вольфрама стали основой его широкого применения в промышленности? В США данный металл называли «тяжелым камнем».

В конце 18 века швед Шееле при обработке минерала азотной кислотой получил шеелит, получив триоксид вольфрама. Чуть позже братьям Элиар удалось получить окись вольфрамам из саксонского вольфрамита. Именно этими химиками были выявлены некоторые химические свойства вольфрама.

Видео по теме

Нахождение в природе

Есть ли в природе в чистом виде вольфрам? Химические свойства данного металла предполагают его присутствие в земной коре по большей части в виде соединений. Например, есть смесь оксидов марганца, железа, вольфрама. Для промышленного применения выбирают соединения ферберит и гюбнерит.

В них помимо вольфрама присутствуют железо и марганец. Физические свойства вольфрама позволяют выделять металл и из вольфрамовых минералов. В них его концентрация не превышает двух процентов. Среди крупнейших месторождений вольфрама отметим Китай, США, Казахстан.

Кроме того, выявлены и существенные запасы руд данного металла в Южной Корее, Боливии, России, Португалии. Отличные физические свойства вольфрама предполагают его существенное промышленное производство. В мире ежегодно производят порядка 50 тысяч тонн этого тугоплавкого элемента.

Главными экспортерами вольфрама считают Южную Корею, Китай, Австрию. Среди импортеров тугоплавкого металла пальма лидерства принадлежит Великобритании, Японии, США, Германии.

Особенности производства

Получение вольфрама осуществляется через промежуточную стадию, подразумевающую выделение из рудного концентрата триоксида вольфрама. Далее осуществляется восстановление его до порошкообразного металла. Подобный этап происходит при температуре около 700 градусов Цельсия.

Какие физические свойства вольфрама лежат в основе данной технологии? Высокая температура его плавления позволяет с помощью порошкообразной металлургии подвергать порошок прессованию, спеканию в атмосфере водорода при температуре около 1300 градусов Цельсия. Далее через полученный вольфрам пропускают электрический ток.

При нагревании металла до температуры в 3000 градусов наблюдается монолитный материал. Путем зонной плавки осуществляется последующая очистка и получение монокристаллического металла.

Свойства

Какие характеристики имеет вольфрам? Химические свойства его основываются на высокой температуре плавления. Элемент проявляет валентности от 2 до 6. Самым устойчивым является вольфрам с валентностью шесть. Металл характеризуется повышенной коррозионной стойкостью. Он не окисляется на воздухе при комнатной температуре.

В оксид вольфрама он превращается только при достижении температуры белого коленья. В электрохимическом ряду напряжений металлов данный элемент располагается после водорода, поэтому он не растворяется в разбавленной плавиковой и серной кислотах.

Вольфрам способен растворяться в пероксиде водорода, а также в смеси плавиковой и азотной кислот.

При наличии окислителей данный металл способен реагировать с расплавленными щелочами. Сначала взаимодействие протекает достаточно медленно, но после достижения температуры 400 градусов наблюдается самопроизвольное разогревание металла, которое ускоряет реакцию.

Вольфрам в смеси плавиковой и азотной кислот образует гексафторвольфрамовую кислоту. В максимальном количестве в промышленности применяют вольфрамовый ангидрид. У вольфроматов есть способность к созданию полимерных анионов.

Этот металл является основой тугоплавких материалов в современной металлургии.

Сферы применения

Как можно использовать карбид вольфрама? Свойства данного соединения позволяют выделять из него чистый вольфрам. Пластичность и тугоплавкость металла сделали его основой при создании нитей накаливания в многочисленных осветительных приборах. Кроме того, вольфрам используют в вакуумных трубках и кинескопах.

Так как у этого элемента высокая плотность, он стал базой для производства тяжелых сплавов. Они незаменимы при создании противовесов, подкалиберных и бронебойных сердечников, сверхскоростных роторов гироскопов для создания баллистических ракет. В больших объемах вольфрам применяют при аргоново-дуговой сварке как электрод.

Сплавы, которые в своем составе содержат вольфрам, имеют высокую жаропрочность, кислотостойкость, они устойчивы к механическим деформациях. Подобные характеристики позволяют применять их для производства хирургических инструментов, брони танков, двигателей самолетов, контейнеров для размещения радиоактивных веществ.

Именно вольфрам является важным компонентом для изготовления высококачественных марок сталей.

Применяют его и в высокотемпературных вакуумных печах в виде нагревательного элемента. В сплаве с рением из него создают термопары для подобных печей.

Заключение

Именно благодаря высокой плотности вольфрама металл удобен для защиты поверхности от ионизирующего излучения. Повышенная твердость и тугоплавкость металла создают существенные сложности с его обработкой. Для решения проблемы вводят в состав никель, медь, железо. Стойкость вольфрама сделала его востребованным при изготовлении конструкционных материалов в современном машиностроении.

Он необходим при фрезеровании, долблении, точении, бурении скважин. Например, победит состоит из карбида вольфрама. Эта смесь наносится на сверла, применяемые при создании отверстий в бетоне. Сульфид вольфрама выступает в качестве высокотемпературной смазки.

Он востребован в производстве. Часть соединений вольфрама используется в виде пигментов и катализаторов. Применяют соединения данного металла и как легирующий элемент в сплавах и сталях на базе железа. Биологической ценности металлический вольфрам не имеет.

Источник: fb.ruБизнес
Чилийская селитра: формула и свойства. Химическая формула селитры

Современные исследования веществ позволяют открывать все новые их возможности. А значит, значительно расширять основные области применения. Так, например, в сельском хозяйстве известны сотни различных удобрений, спосо…

Домашний уют
Двойной суперфосфат: применение, формула и цена удобрения

Минеральные удобрения — основа современного сельского хозяйства. Они позволяют значительно повышать плодородие даже совсем бедных почв, что дает возможность выращивать богатые урожаи практически во всех регионах…

Здоровье
Kailas Jeevan: инструкция по применению, описание и свойства

Уникальный препарат аюрведического действия для наружного и внутреннего использования, приготовленный на основе лекарственных трав и растений, а также масел, – это крем Kailas Jeevan. Инструкция по применению со…

Здоровье
Коровяк обыкновенный. Применение, рецепты и свойства лечебные

Коровяк – трава полезная и лечебная, да и с виду красивая. Это растение, благодаря ярким цветочкам, может стать украшением клумбы. Род коровяк (Verbascum) относится к многочисленному семейству Норичниковые (Scro…

Здоровье
Препарат «Имодиум»: показания к применению, состав и свойства

Довольно часто люди обращаются к врачу, жалуясь на расстройства пищеварения. И нередко специалисты рекомендуют «Имодиум». Показания к применению лекарства включают в себя и столь распространенную проблему,…

Здоровье
“Индометацин” (мазь): инструкция по применению, состав и свойства препарата

К противоревматическим и противовоспалительным средствам относится “Индометацин” (мазь). Инструкция по применению этого препарата содержит всю информацию о показаниях и противопоказаниях, дозировке и взаимодействии с …

Здоровье
Препарат «Ранитидин»: показания к применению, состав и свойства

Заболевания желудочно-кишечного тракта — крайне распространенная проблема, от которой страдают люди вне зависимости от возраста и пола. Например, гастрит нередко диагностируется среди подростков, а иногда и у ма…

Здоровье
'Доксициклин': применение, рекомендации и свойства

Во время многих инфекционных заболеваний лечащие врачи прописывают такую лекарственную форму, как “Доксициклин”. Применение этого препарата должно осуществляться в соответствии с рекомендациями специалиста и учитывать…

Красота
“Малавтилин”: отзывы (крем) и инструкция по применению. Эффективность и свойства крема “Малавтилин”

Современные кремы часто обладают комплексным действием на кожу, то есть одновременно увлажняют и устраняют морщины либо дают матирующий эффект и в то же время помогают бороться с прыщами и покраснениями. О подобном ср…

Образование
Угарный газ: формула и свойства

Многие газообразные вещества, существующие в природе и получаемые при производствах, являются сильными отравляющими соединениями. Известно, что хлор использовался как биологическое оружие, пары брома обладают сильно р…

Источник: http://monateka.com/article/179111/

Ссылка на основную публикацию
Adblock
detector